The growth rate of the first Betti number in abelian covers of 3-manifolds
We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M...
Gespeichert in:
Veröffentlicht in: | Mathematical proceedings of the Cambridge Philosophical Society 2006-11, Vol.141 (3), p.465-476 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 476 |
---|---|
container_issue | 3 |
container_start_page | 465 |
container_title | Mathematical proceedings of the Cambridge Philosophical Society |
container_volume | 141 |
creator | COCHRAN, TIM D. MASTERS, JOSEPH |
description | We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M$, for there to exist a family of $\mathbb{Z}_n$ covering spaces, $M_n$, in which $\beta_1(M_n)$ increases linearly with $n$. The latter generalizes work of M. Katz and C. Lescop, by showing that the non-vanishing of any one of these invariants of $M$ is sufficient to guarantee certain optimal systolic inequalities for $M$ (by work of Ivanov and Katz). |
doi_str_mv | 10.1017/S0305004106009479 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_219972828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0305004106009479</cupid><sourcerecordid>1402704401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-a1149faca7dcea5b3624c489ee21840c6b8f9ca61a7005b1c9f17e74f436f3ac3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvwvjrZpMnmqEWrUhC10mPIpkmb2t2tSeqfb-8uLXoQTwMzvzfv8RA6JXBOgIiLZ6AwAGAEOIBkQu6hHmFcZgVwto963Tnr7ofoKMYlAFBJoIfuJwuL56H5SAscdLK4cTi1K-dDTPjKpuRxvalKG7CvsS7tyusam-bdhtixNKt07V2zmsVjdOD0KtqT3eyjl5vryfA2Gz-M7oaX48xQKVKmCWHSaaPFzFg9KCnPmWGFtDYnBQPDy8JJoznRAmBQEiMdEVYwxyh3VBvaR2fbv-vQvG1sTGrZbELdWqqcSCnyIi9aiGwhE5oYg3VqHXylw5cioLrG1J_GWk221fiY7OePQIdXxQUVA8VHj2o6bfOSyZNiLU93Hroqg5_N7W-S_12-AcXHex8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219972828</pqid></control><display><type>article</type><title>The growth rate of the first Betti number in abelian covers of 3-manifolds</title><source>Cambridge Journals</source><creator>COCHRAN, TIM D. ; MASTERS, JOSEPH</creator><creatorcontrib>COCHRAN, TIM D. ; MASTERS, JOSEPH</creatorcontrib><description>We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M$, for there to exist a family of $\mathbb{Z}_n$ covering spaces, $M_n$, in which $\beta_1(M_n)$ increases linearly with $n$. The latter generalizes work of M. Katz and C. Lescop, by showing that the non-vanishing of any one of these invariants of $M$ is sufficient to guarantee certain optimal systolic inequalities for $M$ (by work of Ivanov and Katz).</description><identifier>ISSN: 0305-0041</identifier><identifier>EISSN: 1469-8064</identifier><identifier>DOI: 10.1017/S0305004106009479</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Mathematical proceedings of the Cambridge Philosophical Society, 2006-11, Vol.141 (3), p.465-476</ispartof><rights>2006 Cambridge Philosophical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-a1149faca7dcea5b3624c489ee21840c6b8f9ca61a7005b1c9f17e74f436f3ac3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0305004106009479/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>COCHRAN, TIM D.</creatorcontrib><creatorcontrib>MASTERS, JOSEPH</creatorcontrib><title>The growth rate of the first Betti number in abelian covers of 3-manifolds</title><title>Mathematical proceedings of the Cambridge Philosophical Society</title><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><description>We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M$, for there to exist a family of $\mathbb{Z}_n$ covering spaces, $M_n$, in which $\beta_1(M_n)$ increases linearly with $n$. The latter generalizes work of M. Katz and C. Lescop, by showing that the non-vanishing of any one of these invariants of $M$ is sufficient to guarantee certain optimal systolic inequalities for $M$ (by work of Ivanov and Katz).</description><issn>0305-0041</issn><issn>1469-8064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvwvjrZpMnmqEWrUhC10mPIpkmb2t2tSeqfb-8uLXoQTwMzvzfv8RA6JXBOgIiLZ6AwAGAEOIBkQu6hHmFcZgVwto963Tnr7ofoKMYlAFBJoIfuJwuL56H5SAscdLK4cTi1K-dDTPjKpuRxvalKG7CvsS7tyusam-bdhtixNKt07V2zmsVjdOD0KtqT3eyjl5vryfA2Gz-M7oaX48xQKVKmCWHSaaPFzFg9KCnPmWGFtDYnBQPDy8JJoznRAmBQEiMdEVYwxyh3VBvaR2fbv-vQvG1sTGrZbELdWqqcSCnyIi9aiGwhE5oYg3VqHXylw5cioLrG1J_GWk221fiY7OePQIdXxQUVA8VHj2o6bfOSyZNiLU93Hroqg5_N7W-S_12-AcXHex8</recordid><startdate>200611</startdate><enddate>200611</enddate><creator>COCHRAN, TIM D.</creator><creator>MASTERS, JOSEPH</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>200611</creationdate><title>The growth rate of the first Betti number in abelian covers of 3-manifolds</title><author>COCHRAN, TIM D. ; MASTERS, JOSEPH</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-a1149faca7dcea5b3624c489ee21840c6b8f9ca61a7005b1c9f17e74f436f3ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COCHRAN, TIM D.</creatorcontrib><creatorcontrib>MASTERS, JOSEPH</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COCHRAN, TIM D.</au><au>MASTERS, JOSEPH</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The growth rate of the first Betti number in abelian covers of 3-manifolds</atitle><jtitle>Mathematical proceedings of the Cambridge Philosophical Society</jtitle><addtitle>Math. Proc. Camb. Phil. Soc</addtitle><date>2006-11</date><risdate>2006</risdate><volume>141</volume><issue>3</issue><spage>465</spage><epage>476</epage><pages>465-476</pages><issn>0305-0041</issn><eissn>1469-8064</eissn><abstract>We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M$, for there to exist a family of $\mathbb{Z}_n$ covering spaces, $M_n$, in which $\beta_1(M_n)$ increases linearly with $n$. The latter generalizes work of M. Katz and C. Lescop, by showing that the non-vanishing of any one of these invariants of $M$ is sufficient to guarantee certain optimal systolic inequalities for $M$ (by work of Ivanov and Katz).</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0305004106009479</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0041 |
ispartof | Mathematical proceedings of the Cambridge Philosophical Society, 2006-11, Vol.141 (3), p.465-476 |
issn | 0305-0041 1469-8064 |
language | eng |
recordid | cdi_proquest_journals_219972828 |
source | Cambridge Journals |
title | The growth rate of the first Betti number in abelian covers of 3-manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A52%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20growth%20rate%20of%20the%20first%20Betti%20number%20in%20abelian%20covers%20of%203-manifolds&rft.jtitle=Mathematical%20proceedings%20of%20the%20Cambridge%20Philosophical%20Society&rft.au=COCHRAN,%20TIM%20D.&rft.date=2006-11&rft.volume=141&rft.issue=3&rft.spage=465&rft.epage=476&rft.pages=465-476&rft.issn=0305-0041&rft.eissn=1469-8064&rft_id=info:doi/10.1017/S0305004106009479&rft_dat=%3Cproquest_cross%3E1402704401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219972828&rft_id=info:pmid/&rft_cupid=10_1017_S0305004106009479&rfr_iscdi=true |