The growth rate of the first Betti number in abelian covers of 3-manifolds

We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical proceedings of the Cambridge Philosophical Society 2006-11, Vol.141 (3), p.465-476
Hauptverfasser: COCHRAN, TIM D., MASTERS, JOSEPH
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give examples of closed hyperbolic 3-manifolds with first Betti number 2 and 3 for which no sequence of finite abelian covering spaces increases the first Betti number. For 3-manifolds $M$ with first Betti number 2 we give a characterization in terms of some generalized self-linking numbers of $M$, for there to exist a family of $\mathbb{Z}_n$ covering spaces, $M_n$, in which $\beta_1(M_n)$ increases linearly with $n$. The latter generalizes work of M. Katz and C. Lescop, by showing that the non-vanishing of any one of these invariants of $M$ is sufficient to guarantee certain optimal systolic inequalities for $M$ (by work of Ivanov and Katz).
ISSN:0305-0041
1469-8064
DOI:10.1017/S0305004106009479