Experimental and theoretical analysis of a rigid rotor supported by air foil bearings

The popularity of compressors utilizing foil bearings is increasing. Their mechanical design is challenging, and an accurate prediction of the bearing coefficients is important. A mathematical model taking into account the foil structure, and the detailed geometry of a three pad foil bearing are pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics & industry : an international journal on mechanical sciences and engineering applications 2015, Vol.16 (1), p.106
Hauptverfasser: Larsen, Jon S., Hansen, Asger J. T., Santos, Ilmar F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The popularity of compressors utilizing foil bearings is increasing. Their mechanical design is challenging, and an accurate prediction of the bearing coefficients is important. A mathematical model taking into account the foil structure, and the detailed geometry of a three pad foil bearing are presented. The steady state solution and dynamic coefficients are obtained through zeroth and first order perturbed equations respectively. Analysis of the foil structure reveals the importance of distinguishing between a static foil stiffness for the zeroth order equation and a dynamic stiffness for the first order equation. Calculated bearing coefficients are compared to experimental results obtained from a dedicated test rig. Generally, good agreement is observed and minor discrepancies for the damping coefficients are discussed.
ISSN:2257-7777
2257-7750
DOI:10.1051/meca/2014066