Experimental and theoretical analysis of a rigid rotor supported by air foil bearings
The popularity of compressors utilizing foil bearings is increasing. Their mechanical design is challenging, and an accurate prediction of the bearing coefficients is important. A mathematical model taking into account the foil structure, and the detailed geometry of a three pad foil bearing are pre...
Gespeichert in:
Veröffentlicht in: | Mechanics & industry : an international journal on mechanical sciences and engineering applications 2015, Vol.16 (1), p.106 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The popularity of compressors utilizing foil bearings is increasing. Their mechanical design is challenging, and an accurate prediction of the bearing coefficients is important. A mathematical model taking into account the foil structure, and the detailed geometry of a three pad foil bearing are presented. The steady state solution and dynamic coefficients are obtained through zeroth and first order perturbed equations respectively. Analysis of the foil structure reveals the importance of distinguishing between a static foil stiffness for the zeroth order equation and a dynamic stiffness for the first order equation. Calculated bearing coefficients are compared to experimental results obtained from a dedicated test rig. Generally, good agreement is observed and minor discrepancies for the damping coefficients are discussed. |
---|---|
ISSN: | 2257-7777 2257-7750 |
DOI: | 10.1051/meca/2014066 |