Cracking and Failure in a High Strength Low Alloy Steel during Solidification

The present study focuses on characterizing cracks and fracture that appeared during solidification in the segregated zones of the as-cast structure of a large size ingot made of high strength low alloy steel. Solidification experiment was conducted, using Gleeble® 3800 thermo-mechanical simulator,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.941, p.15-20
Hauptverfasser: Zhang, Chunping, Loucif, Abdelhalim, Tremblay, Rami, Jahazi, Mohammad, Lapierre-Boire, Louis Philippe, Chadha, Kanwal, Shahriari, Davood
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study focuses on characterizing cracks and fracture that appeared during solidification in the segregated zones of the as-cast structure of a large size ingot made of high strength low alloy steel. Solidification experiment was conducted, using Gleeble® 3800 thermo-mechanical simulator, on samples taken from the ingot/hot top interface of a 40 MT (Metric Ton) ingot. The thermal cycle consisted in heating from ambient temperature to 1385 °C with a constant heating rate of 2 °C/s followed by a free cooling. Optical and scanning electronic microscopies were used to analyze and quantify the cracked regions. Microstructural observations revealed that shrinkage during rapid solidification of melted grain boundaries ultimately led to the initiation and propagation of cracks.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.941.15