Characteristics and Formation Mechanism of the Interface of Mg/Al Bimetallic Composites Prepared by Lost Foam Casting

In the present work, the Mg/Al bimetallic composites were successfully prepared by the lost foam casting (LFC) process, and the characteristics and formation mechanism of the interface of the Mg/Al bimetallic composites were investigated. The results show that a uniform and compact metallurgical int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.941, p.2054-2059
Hauptverfasser: Jiang, Wen Ming, Fan, Zi Tian, Li, Guang Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present work, the Mg/Al bimetallic composites were successfully prepared by the lost foam casting (LFC) process, and the characteristics and formation mechanism of the interface of the Mg/Al bimetallic composites were investigated. The results show that a uniform and compact metallurgical interface with an average thickness of about 1400 μm was formed between magnesium alloy and aluminum alloy. The interface layer of the Mg/Al bimetallic composites was composed of three different reaction layers, namely the Al12Mg17+δ(Mg) eutectic layer adjacent to the magnesium matrix, the Al12Mg17+Mg2Si interlayer and the Al3Mg2+Mg2Si layer close to the aluminum matrix. The microhardnesses of the interface layer were remarkably higher than those of the magnesium and aluminum matrixes. The stress strength of the Mg/Al bimetallic composites was up to 47.67 MPa. The fractograph of the push out sample mainly showed a brittle fracture nature. The formation of the interface of the Mg/Al bimetallic composites was attributed to the fusion and diffusion bonding. With the variations of the concentrations of the different elements at the interface, the Al3Mg2 intermetallic phase first formed near to the aluminum matrix, and then the Al12Mg17 and Mg2Si successively generated toward the magnesium matrix, finally obtaining the interface layer of the Mg/Al bimetallic composites.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.941.2054