Recrystallization and Grain Growth Phenomena in Stainless Steels for Different Thermo-Mechanical Processes
The mechanical properties of steels are strictly connected to chemical composition as well as to microstructural features obtained after thermo-mechanical processing. As a consequence, recrystallization and grain growth are relevant to the mechanical properties of steels, thus suggesting the necessi...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2018-12, Vol.941, p.135-140 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mechanical properties of steels are strictly connected to chemical composition as well as to microstructural features obtained after thermo-mechanical processing. As a consequence, recrystallization and grain growth are relevant to the mechanical properties of steels, thus suggesting the necessity of mathematical models able to predict the microstructural evolution after thermo-mechanical cycles. In particular, in stainless steel grades, mechanical characteristics, and a proper microstructure with an adequate grain size distribution, are very important in order to achieve the required formability and deep drawing properties for many applications. This paper deals with the study of microstructural changes, such as grain size variations and recrystallized volume fraction in stainless steels during isothermal treatments through the application of a mathematical model, able in general to describe the primary recrystallization and grain growth in metals. The developed model takes into account the recrystallization phenomenon and Zener drag effect. A general continuity equation is proposed describing in continuous way recrystallization and grain growth phenomena without taking into account textures effect. The influence of input parameters is analyzed. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.941.135 |