Effect of Preparation Process on Surface Quality and Microstructure of Titanium Sheet
At present, domestic cold-rolled titanium sheets have many surface defects, which are significantly different from foreign surface quality. This paper mainly studies the differences in the microstructure and performance of titanium plates GR1 and GR2 imported from Japan and domestic titanium plates...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2019-01, Vol.944, p.79-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | At present, domestic cold-rolled titanium sheets have many surface defects, which are significantly different from foreign surface quality. This paper mainly studies the differences in the microstructure and performance of titanium plates GR1 and GR2 imported from Japan and domestic titanium plates TA1, and analyzes the causes of surface defects to solve the problem about TA1. The surface properties of different materials were observed. The mechanical properties of the materials were obtained by room temperature tensile test. The surface roughness of the three materials was tested. The microstructure and composition of the three materials were characterized by SEM, EDS and XRD. The results show that the surface of GR1 and GR2 is brighter and has no obvious chromatic aberration. The surface chromatic aberration of TA1 is larger. The mechanical properties of TA1 are the best. The tensile strength and yield strength of rolling are 325.19MPa and 271.17MPa, respectively, and the lateral direction is 329.19MPa and The roughness of 303.15MPa, GR1 and GR2 is slightly lower than that of TA1. The black area on the surface of TA1 is loose and the oxygen content is high. The pole figure of GR1, GR2 and TA1 are obtained. Keywords: Cold-rolled titanium sheets; Chromatic aberration; Mechanical properties; SEM; Texture |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.944.79 |