Selective Laser Melting of Inconel 718 under High Power and High Scanning Speed Conditions

Selective laser melting (SLM) process has advantages in building free shape and simplification of manufacturing process. Since Ni-base superalloys have lower ductility at lower temperature, it is difficult to produce the parts by means of other process like forging. Therefore, SLM process has alread...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.941, p.1574-1578
Hauptverfasser: Kyogoku, Hideki, Ikeshoji, Toshi Taka, Nakamura, Kazuya, Yonehara, Makiko, Tachibana, Yusuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selective laser melting (SLM) process has advantages in building free shape and simplification of manufacturing process. Since Ni-base superalloys have lower ductility at lower temperature, it is difficult to produce the parts by means of other process like forging. Therefore, SLM process has already applied to produce Ni-base superalloy parts. However, SLM process needs a long process time comparing to casting and machining. One of the means to solve this problem is an application of the high scanning speed condition under high power laser output. In this research, the optimum fabrication condition of Inconel 718 superalloy by SLM process under high power and high scanning speed condition was investigated. As a result, the optimum fabrication condition was obtained using the process map. However, the relative density of the as-built specimen fabricated under high power and high scanning speed condition is lower than that of the as-built specimen fabricated under the condition of 300 W and 600 mm/s. This may be mainly due to the occurrence of gas-pores by key-hole like phenomenon in melt pool and the increase of spattering at high power and high scanning speed condition.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.941.1574