A minimum-residual mixed reduced basis method: Exact residual certification and simultaneous finite-element reduced-basis refinement
We present a reduced basis method for parametrized partial differential equations certified by a dual-norm bound of the residual computed not in the typical finite-element “truth” space but rather in an infinite-dimensional function space. The bound builds on a finite element method and an associate...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2016-01, Vol.50 (1), p.163-185 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a reduced basis method for parametrized partial differential equations certified by a dual-norm bound of the residual computed not in the typical finite-element “truth” space but rather in an infinite-dimensional function space. The bound builds on a finite element method and an associated reduced-basis approximation derived from a minimum-residual mixed formulation. The offline stage combines a spatial mesh adaptation for finite elements and a greedy parameter sampling strategy for reduced bases to yield a reliable online system in an efficient manner; the online stage provides the solution and the associated dual-norm bound of the residual for any parameter value in complexity independent of the finite element resolution. We assess the effectiveness of the approach for a parametrized reaction-diffusion equation and a parametrized advection-diffusion equation with a corner singularity; not only does the residual bound provide reliable certificates for the solutions, the associated mesh adaptivity significantly reduces the offline computational cost for the reduced-basis generation and the greedy parameter sampling ensures quasi-optimal online complexity. |
---|---|
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an/2015039 |