A minimum-residual mixed reduced basis method: Exact residual certification and simultaneous finite-element reduced-basis refinement

We present a reduced basis method for parametrized partial differential equations certified by a dual-norm bound of the residual computed not in the typical finite-element “truth” space but rather in an infinite-dimensional function space. The bound builds on a finite element method and an associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2016-01, Vol.50 (1), p.163-185
1. Verfasser: Yano, Masayuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a reduced basis method for parametrized partial differential equations certified by a dual-norm bound of the residual computed not in the typical finite-element “truth” space but rather in an infinite-dimensional function space. The bound builds on a finite element method and an associated reduced-basis approximation derived from a minimum-residual mixed formulation. The offline stage combines a spatial mesh adaptation for finite elements and a greedy parameter sampling strategy for reduced bases to yield a reliable online system in an efficient manner; the online stage provides the solution and the associated dual-norm bound of the residual for any parameter value in complexity independent of the finite element resolution. We assess the effectiveness of the approach for a parametrized reaction-diffusion equation and a parametrized advection-diffusion equation with a corner singularity; not only does the residual bound provide reliable certificates for the solutions, the associated mesh adaptivity significantly reduces the offline computational cost for the reduced-basis generation and the greedy parameter sampling ensures quasi-optimal online complexity.
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an/2015039