Forging Process Design and Simulation Optimization of a Complex-Shaped Aluminium Alloy Component

In order to meet the requirements of lightweight and replace steel with the aluminum for a component on the high speed rail, the forging process of a complex-shaped aluminum alloy component was researched and the parameters were optimized with the DEFORM-3D finite element simulation technology. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-12, Vol.941, p.784-789
Hauptverfasser: Wang, Song Wei, Zhang, Shi Hong, Chen, Yan, Song, Hong Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to meet the requirements of lightweight and replace steel with the aluminum for a component on the high speed rail, the forging process of a complex-shaped aluminum alloy component was researched and the parameters were optimized with the DEFORM-3D finite element simulation technology. The qualified products were finally obtained instead of the original steel castings by reducing weight of 65%. It is noted that the parts with complicated shape and non-symmetry, metal flow uneven during forging process that lead to incomplete forming, higher forging pressure problems. In this paper, such problems were analyzed couple with numerical simulation method based on a certain forming pressure. Moreover, the model and slot was reasonably designed. In addition, the size of blank was constantly optimized to change the metal flows direction and cavity filling mode. Finally, the forgings with good surface quality and mechanical properties were obtained by production test, and can be used as reference for this kind of forging components.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.941.784