A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces
In this paper, we introduce a modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and split-equality fixed-point problem for Bregman quasi-nonexpansive mappings in p -uniformly convex and uniformly smooth Banach spaces. We introduce a generali...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2019-06, Vol.38 (2), p.1-28, Article 77 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce a modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and split-equality fixed-point problem for Bregman quasi-nonexpansive mappings in
p
-uniformly convex and uniformly smooth Banach spaces. We introduce a generalized step size such that the algorithm does not require a prior knowledge of the operator norms and prove a strong convergence theorem for the sequence generated by our algorithm. We give some applications and numerical examples to show the consistency and accuracy of our algorithm. Our results complement and extend many other recent results in this direction in literature. |
---|---|
ISSN: | 2238-3603 1807-0302 |
DOI: | 10.1007/s40314-019-0841-5 |