Technological Processes for Manufacturing Cellular Concrete Products for Construction

Cellular concrete occupies one of the leading places in world practice of a high-rise construction as the constructional heat-insulating material used in case of construction and reconstruction of buildings and constructions of different purpose. In this artificial stone construction material pores...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-09, Vol.931, p.634-639
Hauptverfasser: Kazaryan, Ryben R., Khvan, Vitaly A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cellular concrete occupies one of the leading places in world practice of a high-rise construction as the constructional heat-insulating material used in case of construction and reconstruction of buildings and constructions of different purpose. In this artificial stone construction material pores (air cells with diameter 0.1-3.0mm) are distributed rather regularly and occupy from 20 to 90% of amount of concrete, providing high heatphysical qualities (coefficient of heat conductivity of 0.07-0.2 W/ms) that allows cellular concrete houses to keep heat well. Excessive (reserve) porosity of cellular concrete provides its frost resistance (compensates expansion of water when freezing and the formed ice without material destruction). Vapor permeability of cellular concrete provides fast removal of technological moisture from material and maintenance of normal moisture conditions in rooms, and rather high air permeability promotes preserving in rooms of fresh air. Significant growth in production the cellular concrete of products is caused by use of rather simple technologies allowing (due to change of degree of porosity and properties of interstitial material) to receive cellular concrete for thermal insulation or sound insulation, to make wall constructional heat-insulating products with a density 250-1200 kg/ m3 and strength of a 1-25 MPa.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.931.634