SnO2/Graphene Nanocomposites with Enhanced Gas Sensing Performance

Graphene-Tin Oxide (G-SnO2) nanocomposites in different morphology were synthesized using tin (II) chloride (SnCl2) and graphene Oxide (GO) via hydrothermal process in the presence of hydrazine and ammonia by adding surfactant for 12 hours in a teflon autoclave at 100oC reaction temperature. Poly (v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-03, Vol.915, p.135-139
Hauptverfasser: Çetinkaya, Sevil, Boran, Filiz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Graphene-Tin Oxide (G-SnO2) nanocomposites in different morphology were synthesized using tin (II) chloride (SnCl2) and graphene Oxide (GO) via hydrothermal process in the presence of hydrazine and ammonia by adding surfactant for 12 hours in a teflon autoclave at 100oC reaction temperature. Poly (vinyl prolidon) (PVP) and poly (ethylene glycol) (PEG) were used as nonionic surfactants while hexadecyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfonate (SDS) were utilized as cationic and anionic surfactants, respectively. The synthesized nanocomposites were characterized by XRD, FESEM, C-TEM and FT-IR. The gas sensing properties of the obtained samples to the vapors of various Volatile Organic Compounds (VOC), such as Ethanol, Methanol, Chloroform, Toluene and Acetone were also investigated at room temperature. The prepared G-SnO2 nanocomposites exhibited high detection performances for ethanol, chloroform and methanol. The nanocomposites could be used as sensor material for VOC gases.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.915.135