Piezoelectricity in the {AxA`(1-x)}BO3 and A{BxB`(1-x)}O3 Ceramic Alloys

ABO3 perovskite ceramics due to their chemical nature and size difference of the cations A (where A is a divalent metal) and B (where B is a tetravalent metal) have non-centro-symmetric polymorphs and display significant piezoelectric properties. One path to improve piezoelectric properties is throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2018-03, Vol.915, p.34-38
Hauptverfasser: Akgenc, Berna, Tasseven, Çetin, Çağın, Tahir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABO3 perovskite ceramics due to their chemical nature and size difference of the cations A (where A is a divalent metal) and B (where B is a tetravalent metal) have non-centro-symmetric polymorphs and display significant piezoelectric properties. One path to improve piezoelectric properties is through alloying these materials. In order to assess the feasibility of this, we have investigated the structure, elastic and piezoelectric properties of prototypical cubic and tetragonal phases of ABO3 bulk ceramic oxides and their alloys: {AxA`(1-x)}BO3 and A{BxB`(1-x)}O3 by density functional theory based first-principle calculations. Using 2x2x2 super cells as models in our calculations, we have covered the full alloying range by varying concentration, x, in steps of 12.5%. We have created models using Ba, Sr, Pb, for A and A`, and Ti, Zr for B and B` both in cubic and tetragonal super cells. Here, we will report the structural and piezoelectric properties of tetragonal phases of ABO3 bulk ceramic oxides and their alloys.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.915.34