NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes for efficient photoelectrochemical water splitting
[Display omitted] •Facile synthesis of NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes.•Unprecedentedly high photocurrent density (1.63 mA/cm2) at 1.23 V vs. RHE.•High photon-to-electron conversion efficiency (84.4%) at λmax = 340 nm.•Efficient light absorption and charge separation promote...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2019-05, Vol.244, p.511-518 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Facile synthesis of NH2-MIL-125(Ti)/TiO2 nanorod heterojunction photoanodes.•Unprecedentedly high photocurrent density (1.63 mA/cm2) at 1.23 V vs. RHE.•High photon-to-electron conversion efficiency (84.4%) at λmax = 340 nm.•Efficient light absorption and charge separation promoted by type II interface.•Excellent long-term stability of saturated photocurrent density for 1 month.
A photoactive amine-functionalized Ti metal-organic framework (MOF) (MIL(125)-NH2(Ti)) layer is uniformly coated on vertically ordered TiO2 nanorods (NRs) via a facile hydrothermal reaction, and the performance of the heterojunction photoanode in photoelectrochemical (PEC) water splitting is studied. The photocurrent density of the MIL(125)-NH2/TiO2 NRs reaches 1.63 mA/cm2 at 1.23 V vs. a reversible hydrogen electrode under AM 1.5 G simulated sunlight illumination, which is ∼2.7 times higher than that of pristine TiO2 NRs. The incident photon-to-electron conversion efficiency of the MIL(125)-NH2/TiO2 NRs improves significantly at λmax = 340 nm, implying the promotion of water oxidation through efficient light absorption and charge separation. The enhancement of the PEC activity in the TiO2 NRs caused by an MIL(125)-NH2 coating is discussed in relation to the surface area and elongated configuration of the TiO2 NRs, the band gap of MIL(125)-NH2(Ti), and the type (II) heterojunction. This study demonstrates the rational design of heterojunctions between the semiconductor and the MOF, which paves the way for new facile and general approaches to achieve a high efficiency in water splitting. |
---|---|
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2018.11.057 |