Study of Interaction between Unsteady Supersonic Jet and Vortex Rings Discharged from Elliptical Cell
Pulsed laser ablation with an elliptical cell gives well-defined thermodynamic conditions to the growth of high-quality thin films. The unsteady supersonic jet formed by the shock tube with small high-pressure chamber was used as a simple alternative model of pulsed laser ablation. The vortex ring f...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2018-01, Vol.910, p.137-142 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pulsed laser ablation with an elliptical cell gives well-defined thermodynamic conditions to the growth of high-quality thin films. The unsteady supersonic jet formed by the shock tube with small high-pressure chamber was used as a simple alternative model of pulsed laser ablation. The vortex ring formed by the shock wave is important to reveal behavior of unsteady supersonic jet discharged from elliptical cell. However, there has been little effort to investigate the interaction between the vortex ring and the jet. The purpose of the present study is to investigate the behavior of the vortex rings and the jet. The experiment and numerical calculation were carried out by schlieren method and by solving the axisymmetric two-dimensional compressible Navier-Stokes equations, respectively. The system of the calculation and the experiment is a model of laser ablation of a certain duration followed by a discharging process through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. Closing a distance between the vortex ring and the jet is higher interaction between the vortex rings. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/www.scientific.net/MSF.910.137 |