Investigation of BTEX Adsorption on Carbon Nanotubes Cartridges from Air Samples
The volatile organic compounds (VOCs) contribute to serious air pollution problems in Viet Nam. Many studies have investigated in air quality monitoring and treatment, in order to determine the average concentrations of Benzene, Toluene, Ethylbenzene and Xylene (BTEX). Carbon nanotubes (CNTs) have b...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2019-03, Vol.889, p.216-222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The volatile organic compounds (VOCs) contribute to serious air pollution problems in Viet Nam. Many studies have investigated in air quality monitoring and treatment, in order to determine the average concentrations of Benzene, Toluene, Ethylbenzene and Xylene (BTEX). Carbon nanotubes (CNTs) have been widely used as adsorbent in environmental treatment, especially for VOCs. This paper aims to determine the adsorption capacity of multiwalled carbon nanotubes for removal of BTEX from air samples. In preliminary study, the effects of various parameters during adsorption experiments were monitored such as flow rate, temperature and BTEX concentrations in air samples. The equipment for BTEX removal was developed by our research team consisting of filter columns, air sample bags, adsorption cartridge. The air samples containing BTEX were conducted directly through a cartridge packed with adsorbent. The adsorption experiments were carried out under various operating conditions such as temperature (30 - 40°C), gas concentration (0,57 - 4,77 mg/L) and the gas flow rate (10 - 90 mL/min). In addition, isotherm studies of CNTs for BTEX removal were achieved by using Langmuir and Freundlich models. The results showed that the experimental parameters were optimized at a flow rate of 30 mL/min and an ambient temperature at 30°C. The adsorption capacity of CNTs increased proportionally with BTEX concentrations. The specific affinity of CNTs for BTEX from air samples was in order of X > E > T > B. The experimental isotherm data were well-fit with the Langmuir model for Benzene and Xylene removal, and the Freundlich model for Toluene and Ethylbenzene adsorption. The CNTs presented highly potential application for BTEX adsorption thanks to their microporous structure and high surface area. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.889.216 |