Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater
This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point....
Gespeichert in:
Veröffentlicht in: | Materials science forum 2017-09, Vol.907, p.157-163 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 163 |
---|---|
container_issue | |
container_start_page | 157 |
container_title | Materials science forum |
container_volume | 907 |
creator | Gaba, Aurel Stoian, Elena Valentina Bratu, Vasile Enescu, Maria Cristiana Vlădulescu, C. Marius Petre, Ivona Camelia |
description | This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point. Calculating dew points of various acid gases and options for reducing cold end corrosion of heat recovery exchangers are presented. For avoiding the cold end corrosion we design a new type of air combustion pre-heater for boilers and furnaces. Also, the tube skin temperature of the first row of pipes of the actual air pre-heater was simulated with this computer program, in order to determine whether this temperature is lower than acid dew point of flue gas. With the simulation for this configuration of the actual combustion air pre-heater, the skin temperature for the first row (for the combustion air flow) of tubes from the upper bundle was TS = 134 °C. A way to reduce the cold end corrosion in the combustion air pre-heaters is raising the temperature of the combustion air at the air pre-heater entrance. This solution involves taking a quantity of preheated air, recirculation and then reintroducing it in the air pre-heater. In the same time, this solution avoiding to use the steam radiator, mounted after the fan, for pre-heating the combustion air from 1°C to 45°C. Thus, the furnaces equipped with the new combustion air pre-heater and modern low NOx burners made a fuel economy about 3%. |
doi_str_mv | 10.4028/www.scientific.net/MSF.907.157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199228311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199228311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3107-d6c4f5c11e18e483a5e3d2d35f654efdbd1923072479ba252e63ea55decc73763</originalsourceid><addsrcrecordid>eNqNkF1LwzAUQIMoOKf_ISD41i4fTdO-iGM4J8wPcHsObXKrGVszk86yf2_GhL36dO_D4VzuQeiOkjQjrBj1fZ8GbaHtbGN12kI3evmYpiWRKRXyDA1onrOklIKdowFhQiQik_klugphRQinBc0HaD5xa4MfW4MnznsXrGvx-MdZY9tPXO_xMhyWCr9Cjxf7LWDX4LH1kd7Uu9Ad8HcPyQyqDvw1umiqdYCbvzlEy-njYjJL5m9Pz5PxPNGcEpmYXGeN0JQCLSAreCWAG2a4aHKRQWNqQ0vGiWSZLOuKCQY5h0oIA1pLLnM-RLdH79a77x2ETq3czrfxpGK0LBkrOKWRuj9SOv4VPDRq6-2m8ntFiToUVLGgOhVUsaCKBVUsqGLBKHg4CjpftaED_XW680_FL3rBgTo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199228311</pqid></control><display><type>article</type><title>Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater</title><source>Scientific.net Journals</source><creator>Gaba, Aurel ; Stoian, Elena Valentina ; Bratu, Vasile ; Enescu, Maria Cristiana ; Vlădulescu, C. Marius ; Petre, Ivona Camelia</creator><creatorcontrib>Gaba, Aurel ; Stoian, Elena Valentina ; Bratu, Vasile ; Enescu, Maria Cristiana ; Vlădulescu, C. Marius ; Petre, Ivona Camelia</creatorcontrib><description>This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point. Calculating dew points of various acid gases and options for reducing cold end corrosion of heat recovery exchangers are presented. For avoiding the cold end corrosion we design a new type of air combustion pre-heater for boilers and furnaces. Also, the tube skin temperature of the first row of pipes of the actual air pre-heater was simulated with this computer program, in order to determine whether this temperature is lower than acid dew point of flue gas. With the simulation for this configuration of the actual combustion air pre-heater, the skin temperature for the first row (for the combustion air flow) of tubes from the upper bundle was TS = 134 °C. A way to reduce the cold end corrosion in the combustion air pre-heaters is raising the temperature of the combustion air at the air pre-heater entrance. This solution involves taking a quantity of preheated air, recirculation and then reintroducing it in the air pre-heater. In the same time, this solution avoiding to use the steam radiator, mounted after the fan, for pre-heating the combustion air from 1°C to 45°C. Thus, the furnaces equipped with the new combustion air pre-heater and modern low NOx burners made a fuel economy about 3%.</description><identifier>ISSN: 0255-5476</identifier><identifier>ISSN: 1662-9752</identifier><identifier>EISSN: 1662-9752</identifier><identifier>DOI: 10.4028/www.scientific.net/MSF.907.157</identifier><language>eng</language><publisher>Pfaffikon: Trans Tech Publications Ltd</publisher><subject>Air flow ; Boiler furnaces ; Boiler tubes ; Catalysis ; Catalytic oxidation ; Ceramics industry ; Cold ; Combustion ; Computer simulation ; Corrosion ; Dew point ; Economic conditions ; Flue gas ; Fuel economy ; Furnaces ; Heat exchangers ; Heat recovery ; Heaters ; Heaters (tube) ; Heating equipment ; Oxidation ; Radiators ; Skin temperature ; Sulfur ; Sulfur dioxide ; Sulfur trioxide ; Sulfuric acid</subject><ispartof>Materials science forum, 2017-09, Vol.907, p.157-163</ispartof><rights>2017 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3107-d6c4f5c11e18e483a5e3d2d35f654efdbd1923072479ba252e63ea55decc73763</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/4424?width=600</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gaba, Aurel</creatorcontrib><creatorcontrib>Stoian, Elena Valentina</creatorcontrib><creatorcontrib>Bratu, Vasile</creatorcontrib><creatorcontrib>Enescu, Maria Cristiana</creatorcontrib><creatorcontrib>Vlădulescu, C. Marius</creatorcontrib><creatorcontrib>Petre, Ivona Camelia</creatorcontrib><title>Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater</title><title>Materials science forum</title><description>This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point. Calculating dew points of various acid gases and options for reducing cold end corrosion of heat recovery exchangers are presented. For avoiding the cold end corrosion we design a new type of air combustion pre-heater for boilers and furnaces. Also, the tube skin temperature of the first row of pipes of the actual air pre-heater was simulated with this computer program, in order to determine whether this temperature is lower than acid dew point of flue gas. With the simulation for this configuration of the actual combustion air pre-heater, the skin temperature for the first row (for the combustion air flow) of tubes from the upper bundle was TS = 134 °C. A way to reduce the cold end corrosion in the combustion air pre-heaters is raising the temperature of the combustion air at the air pre-heater entrance. This solution involves taking a quantity of preheated air, recirculation and then reintroducing it in the air pre-heater. In the same time, this solution avoiding to use the steam radiator, mounted after the fan, for pre-heating the combustion air from 1°C to 45°C. Thus, the furnaces equipped with the new combustion air pre-heater and modern low NOx burners made a fuel economy about 3%.</description><subject>Air flow</subject><subject>Boiler furnaces</subject><subject>Boiler tubes</subject><subject>Catalysis</subject><subject>Catalytic oxidation</subject><subject>Ceramics industry</subject><subject>Cold</subject><subject>Combustion</subject><subject>Computer simulation</subject><subject>Corrosion</subject><subject>Dew point</subject><subject>Economic conditions</subject><subject>Flue gas</subject><subject>Fuel economy</subject><subject>Furnaces</subject><subject>Heat exchangers</subject><subject>Heat recovery</subject><subject>Heaters</subject><subject>Heaters (tube)</subject><subject>Heating equipment</subject><subject>Oxidation</subject><subject>Radiators</subject><subject>Skin temperature</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><subject>Sulfur trioxide</subject><subject>Sulfuric acid</subject><issn>0255-5476</issn><issn>1662-9752</issn><issn>1662-9752</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkF1LwzAUQIMoOKf_ISD41i4fTdO-iGM4J8wPcHsObXKrGVszk86yf2_GhL36dO_D4VzuQeiOkjQjrBj1fZ8GbaHtbGN12kI3evmYpiWRKRXyDA1onrOklIKdowFhQiQik_klugphRQinBc0HaD5xa4MfW4MnznsXrGvx-MdZY9tPXO_xMhyWCr9Cjxf7LWDX4LH1kd7Uu9Ad8HcPyQyqDvw1umiqdYCbvzlEy-njYjJL5m9Pz5PxPNGcEpmYXGeN0JQCLSAreCWAG2a4aHKRQWNqQ0vGiWSZLOuKCQY5h0oIA1pLLnM-RLdH79a77x2ETq3czrfxpGK0LBkrOKWRuj9SOv4VPDRq6-2m8ntFiToUVLGgOhVUsaCKBVUsqGLBKHg4CjpftaED_XW680_FL3rBgTo</recordid><startdate>20170925</startdate><enddate>20170925</enddate><creator>Gaba, Aurel</creator><creator>Stoian, Elena Valentina</creator><creator>Bratu, Vasile</creator><creator>Enescu, Maria Cristiana</creator><creator>Vlădulescu, C. Marius</creator><creator>Petre, Ivona Camelia</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170925</creationdate><title>Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater</title><author>Gaba, Aurel ; Stoian, Elena Valentina ; Bratu, Vasile ; Enescu, Maria Cristiana ; Vlădulescu, C. Marius ; Petre, Ivona Camelia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3107-d6c4f5c11e18e483a5e3d2d35f654efdbd1923072479ba252e63ea55decc73763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air flow</topic><topic>Boiler furnaces</topic><topic>Boiler tubes</topic><topic>Catalysis</topic><topic>Catalytic oxidation</topic><topic>Ceramics industry</topic><topic>Cold</topic><topic>Combustion</topic><topic>Computer simulation</topic><topic>Corrosion</topic><topic>Dew point</topic><topic>Economic conditions</topic><topic>Flue gas</topic><topic>Fuel economy</topic><topic>Furnaces</topic><topic>Heat exchangers</topic><topic>Heat recovery</topic><topic>Heaters</topic><topic>Heaters (tube)</topic><topic>Heating equipment</topic><topic>Oxidation</topic><topic>Radiators</topic><topic>Skin temperature</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><topic>Sulfur trioxide</topic><topic>Sulfuric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaba, Aurel</creatorcontrib><creatorcontrib>Stoian, Elena Valentina</creatorcontrib><creatorcontrib>Bratu, Vasile</creatorcontrib><creatorcontrib>Enescu, Maria Cristiana</creatorcontrib><creatorcontrib>Vlădulescu, C. Marius</creatorcontrib><creatorcontrib>Petre, Ivona Camelia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Materials science forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaba, Aurel</au><au>Stoian, Elena Valentina</au><au>Bratu, Vasile</au><au>Enescu, Maria Cristiana</au><au>Vlădulescu, C. Marius</au><au>Petre, Ivona Camelia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater</atitle><jtitle>Materials science forum</jtitle><date>2017-09-25</date><risdate>2017</risdate><volume>907</volume><spage>157</spage><epage>163</epage><pages>157-163</pages><issn>0255-5476</issn><issn>1662-9752</issn><eissn>1662-9752</eissn><abstract>This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point. Calculating dew points of various acid gases and options for reducing cold end corrosion of heat recovery exchangers are presented. For avoiding the cold end corrosion we design a new type of air combustion pre-heater for boilers and furnaces. Also, the tube skin temperature of the first row of pipes of the actual air pre-heater was simulated with this computer program, in order to determine whether this temperature is lower than acid dew point of flue gas. With the simulation for this configuration of the actual combustion air pre-heater, the skin temperature for the first row (for the combustion air flow) of tubes from the upper bundle was TS = 134 °C. A way to reduce the cold end corrosion in the combustion air pre-heaters is raising the temperature of the combustion air at the air pre-heater entrance. This solution involves taking a quantity of preheated air, recirculation and then reintroducing it in the air pre-heater. In the same time, this solution avoiding to use the steam radiator, mounted after the fan, for pre-heating the combustion air from 1°C to 45°C. Thus, the furnaces equipped with the new combustion air pre-heater and modern low NOx burners made a fuel economy about 3%.</abstract><cop>Pfaffikon</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/MSF.907.157</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0255-5476 |
ispartof | Materials science forum, 2017-09, Vol.907, p.157-163 |
issn | 0255-5476 1662-9752 1662-9752 |
language | eng |
recordid | cdi_proquest_journals_2199228311 |
source | Scientific.net Journals |
subjects | Air flow Boiler furnaces Boiler tubes Catalysis Catalytic oxidation Ceramics industry Cold Combustion Computer simulation Corrosion Dew point Economic conditions Flue gas Fuel economy Furnaces Heat exchangers Heat recovery Heaters Heaters (tube) Heating equipment Oxidation Radiators Skin temperature Sulfur Sulfur dioxide Sulfur trioxide Sulfuric acid |
title | Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cold%20End%20Corrosion%20Avoiding%20by%20Using%20a%20New%20Type%20of%20Air%20Combustion%20Pre-Heater&rft.jtitle=Materials%20science%20forum&rft.au=Gaba,%20Aurel&rft.date=2017-09-25&rft.volume=907&rft.spage=157&rft.epage=163&rft.pages=157-163&rft.issn=0255-5476&rft.eissn=1662-9752&rft_id=info:doi/10.4028/www.scientific.net/MSF.907.157&rft_dat=%3Cproquest_cross%3E2199228311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199228311&rft_id=info:pmid/&rfr_iscdi=true |