Cold End Corrosion Avoiding by Using a New Type of Air Combustion Pre-Heater

This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2017-09, Vol.907, p.157-163
Hauptverfasser: Gaba, Aurel, Stoian, Elena Valentina, Bratu, Vasile, Enescu, Maria Cristiana, Vlădulescu, C. Marius, Petre, Ivona Camelia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the possibility of reducing the cold end corrosion in boilers and furnaces by using a new type of air combustion pre-heater. Cold end corrosion appears due to catalytic oxidation of the sulfur dioxide to sulfur trioxide and then due to the sulfuric acid condensation at dew point. Calculating dew points of various acid gases and options for reducing cold end corrosion of heat recovery exchangers are presented. For avoiding the cold end corrosion we design a new type of air combustion pre-heater for boilers and furnaces. Also, the tube skin temperature of the first row of pipes of the actual air pre-heater was simulated with this computer program, in order to determine whether this temperature is lower than acid dew point of flue gas. With the simulation for this configuration of the actual combustion air pre-heater, the skin temperature for the first row (for the combustion air flow) of tubes from the upper bundle was TS = 134 °C. A way to reduce the cold end corrosion in the combustion air pre-heaters is raising the temperature of the combustion air at the air pre-heater entrance. This solution involves taking a quantity of preheated air, recirculation and then reintroducing it in the air pre-heater. In the same time, this solution avoiding to use the steam radiator, mounted after the fan, for pre-heating the combustion air from 1°C to 45°C. Thus, the furnaces equipped with the new combustion air pre-heater and modern low NOx burners made a fuel economy about 3%.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.907.157