Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems

We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2017-11, Vol.51 (6), p.2127-2158
Hauptverfasser: Feng, Lihong, Antoulas, Athanasios C., Benner, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2158
container_issue 6
container_start_page 2127
container_title ESAIM. Mathematical modelling and numerical analysis
container_volume 51
creator Feng, Lihong
Antoulas, Athanasios C.
Benner, Peter
description We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It is shown that for some special non-parametrized LTI systems, particularly efficiently computable error bounds can be derived. According to the error bounds, reduced-order models of both non-parametrized and parametrized systems, computed by Krylov subspace based model reduction methods, can be obtained automatically and reliably. Simulations for several examples from engineering applications have demonstrated the robustness of the error bounds.
doi_str_mv 10.1051/m2an/2017014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199218377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199218377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-9a3c74442e4c94770a74afe5d8222ed4a5f7dcf6a2de818c8e1817e7d47e91473</originalsourceid><addsrcrecordid>eNo9kNFKwzAUhoMoOKd3PkDAGwXjkjRt0ksRN4UxEZV5F2JzKp1rU09acD69HRtenR_Ox384HyHngt8InopJLV0zkVxoLtQBGQmZc5YYJQ7JiOtMsdQk78fkJMYV51xwlY6IfQk1UEfbEDvAKmBFATEg_Qh94yMth4jg-wI8C-gBaR08rNdV80lDSS-b0LCr1qGrocPqFzwdVuCQxs1QWMdTclS6dYSz_RyTt-n9690Dmz_NHu9u56xIuOhY7pJCK6UkqCJXWnOnlSsh9UZKCV65tNS-KDMnPRhhCgPCCA3aKw25UDoZk4tdb4vhu4fY2VXosRlOWinyXAqT6C11vaMKDDEilLbFqna4sYLbrUK7VWj3Cgec7fBq-OXnn3X4ZTOd6NQavrSz-XSxfJ5ndpH8AeIzdBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199218377</pqid></control><display><type>article</type><title>Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems</title><source>Alma/SFX Local Collection</source><creator>Feng, Lihong ; Antoulas, Athanasios C. ; Benner, Peter</creator><creatorcontrib>Feng, Lihong ; Antoulas, Athanasios C. ; Benner, Peter</creatorcontrib><description>We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It is shown that for some special non-parametrized LTI systems, particularly efficiently computable error bounds can be derived. According to the error bounds, reduced-order models of both non-parametrized and parametrized systems, computed by Krylov subspace based model reduction methods, can be obtained automatically and reliably. Simulations for several examples from engineering applications have demonstrated the robustness of the error bounds.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2017014</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>37M05 ; 65L70 ; 65L80 ; 65P99 ; Computer simulation ; error estimation ; Error reduction ; Linear systems ; Model order reduction ; Model reduction ; Parameterization ; Reduced order models ; Subspace methods ; Transfer functions</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2017-11, Vol.51 (6), p.2127-2158</ispartof><rights>2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2017/06/m2an160008/m2an160008.html .</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-9a3c74442e4c94770a74afe5d8222ed4a5f7dcf6a2de818c8e1817e7d47e91473</citedby><cites>FETCH-LOGICAL-c301t-9a3c74442e4c94770a74afe5d8222ed4a5f7dcf6a2de818c8e1817e7d47e91473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Feng, Lihong</creatorcontrib><creatorcontrib>Antoulas, Athanasios C.</creatorcontrib><creatorcontrib>Benner, Peter</creatorcontrib><title>Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It is shown that for some special non-parametrized LTI systems, particularly efficiently computable error bounds can be derived. According to the error bounds, reduced-order models of both non-parametrized and parametrized systems, computed by Krylov subspace based model reduction methods, can be obtained automatically and reliably. Simulations for several examples from engineering applications have demonstrated the robustness of the error bounds.</description><subject>37M05</subject><subject>65L70</subject><subject>65L80</subject><subject>65P99</subject><subject>Computer simulation</subject><subject>error estimation</subject><subject>Error reduction</subject><subject>Linear systems</subject><subject>Model order reduction</subject><subject>Model reduction</subject><subject>Parameterization</subject><subject>Reduced order models</subject><subject>Subspace methods</subject><subject>Transfer functions</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kNFKwzAUhoMoOKd3PkDAGwXjkjRt0ksRN4UxEZV5F2JzKp1rU09acD69HRtenR_Ox384HyHngt8InopJLV0zkVxoLtQBGQmZc5YYJQ7JiOtMsdQk78fkJMYV51xwlY6IfQk1UEfbEDvAKmBFATEg_Qh94yMth4jg-wI8C-gBaR08rNdV80lDSS-b0LCr1qGrocPqFzwdVuCQxs1QWMdTclS6dYSz_RyTt-n9690Dmz_NHu9u56xIuOhY7pJCK6UkqCJXWnOnlSsh9UZKCV65tNS-KDMnPRhhCgPCCA3aKw25UDoZk4tdb4vhu4fY2VXosRlOWinyXAqT6C11vaMKDDEilLbFqna4sYLbrUK7VWj3Cgec7fBq-OXnn3X4ZTOd6NQavrSz-XSxfJ5ndpH8AeIzdBg</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Feng, Lihong</creator><creator>Antoulas, Athanasios C.</creator><creator>Benner, Peter</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20171101</creationdate><title>Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems</title><author>Feng, Lihong ; Antoulas, Athanasios C. ; Benner, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-9a3c74442e4c94770a74afe5d8222ed4a5f7dcf6a2de818c8e1817e7d47e91473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>37M05</topic><topic>65L70</topic><topic>65L80</topic><topic>65P99</topic><topic>Computer simulation</topic><topic>error estimation</topic><topic>Error reduction</topic><topic>Linear systems</topic><topic>Model order reduction</topic><topic>Model reduction</topic><topic>Parameterization</topic><topic>Reduced order models</topic><topic>Subspace methods</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Lihong</creatorcontrib><creatorcontrib>Antoulas, Athanasios C.</creatorcontrib><creatorcontrib>Benner, Peter</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Lihong</au><au>Antoulas, Athanasios C.</au><au>Benner, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>51</volume><issue>6</issue><spage>2127</spage><epage>2158</epage><pages>2127-2158</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It is shown that for some special non-parametrized LTI systems, particularly efficiently computable error bounds can be derived. According to the error bounds, reduced-order models of both non-parametrized and parametrized systems, computed by Krylov subspace based model reduction methods, can be obtained automatically and reliably. Simulations for several examples from engineering applications have demonstrated the robustness of the error bounds.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2017014</doi><tpages>32</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0764-583X
ispartof ESAIM. Mathematical modelling and numerical analysis, 2017-11, Vol.51 (6), p.2127-2158
issn 0764-583X
1290-3841
language eng
recordid cdi_proquest_journals_2199218377
source Alma/SFX Local Collection
subjects 37M05
65L70
65L80
65P99
Computer simulation
error estimation
Error reduction
Linear systems
Model order reduction
Model reduction
Parameterization
Reduced order models
Subspace methods
Transfer functions
title Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T20%3A55%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20a%20posteriori%20error%20bounds%20for%20reduced-order%20modelling%20of%20(non-)parametrized%20linear%20systems&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Feng,%20Lihong&rft.date=2017-11-01&rft.volume=51&rft.issue=6&rft.spage=2127&rft.epage=2158&rft.pages=2127-2158&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2017014&rft_dat=%3Cproquest_cross%3E2199218377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199218377&rft_id=info:pmid/&rfr_iscdi=true