Some a posteriori error bounds for reduced-order modelling of (non-)parametrized linear systems

We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2017-11, Vol.51 (6), p.2127-2158
Hauptverfasser: Feng, Lihong, Antoulas, Athanasios C., Benner, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a posteriori error bounds for reduced-order models of non-parametrized linear time invariant (LTI) systems and parametrized LTI systems. The error bounds estimate the errors of the transfer functions of the reduced-order models, and are independent of the model reduction methods used. It is shown that for some special non-parametrized LTI systems, particularly efficiently computable error bounds can be derived. According to the error bounds, reduced-order models of both non-parametrized and parametrized systems, computed by Krylov subspace based model reduction methods, can be obtained automatically and reliably. Simulations for several examples from engineering applications have demonstrated the robustness of the error bounds.
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an/2017014