A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation
In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as u...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2017-11, Vol.51 (6), p.2367-2398 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2398 |
---|---|
container_issue | 6 |
container_start_page | 2367 |
container_title | ESAIM. Mathematical modelling and numerical analysis |
container_volume | 51 |
creator | Ignat, Liviu I. Pozo, Alejandro |
description | In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented. |
doi_str_mv | 10.1051/m2an/2017029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2199218312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2199218312</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-881b6c5a650033e6a5b5b632f606cc5c9c1f880fc56574e5c36e8d47359e79133</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs3f0DAq2vzsckmx1r8goIiansLaTrbpnZ32yRb9N-7pcXTwMwz7wsPQteU3FEi6KBith4wQgvC9AnqUaZJxlVOT1GPFDLPhOLTc3QR44oQQkkuemg6xBEqn819dAES4LUNC8iSrwDPYGl3vgl4EyBC2Pl6gaNbQncqu21aArbtooI6wRzft91fiBi2rU2-qS_RWWnXEa6Os48-Hx8-Rs_Z-PXpZTQcZ45znTKl6Ew6YaUghHOQVszETHJWSiKdE047WipFSiekKHIQjktQ87zgQkOhKed9dHPI3YRm20JMZtW0oe4qDaNaM6o4ZR11e6BcaGIMUJpN8JUNv4YSs3dn9u7M0V2HZwfcxwQ__6wN30YWvBBGkYnRXxNO3xg17_wPud5wbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2199218312</pqid></control><display><type>article</type><title>A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation</title><source>Alma/SFX Local Collection</source><creator>Ignat, Liviu I. ; Pozo, Alejandro</creator><creatorcontrib>Ignat, Liviu I. ; Pozo, Alejandro</creatorcontrib><description>In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented.</description><identifier>ISSN: 0764-583X</identifier><identifier>EISSN: 1290-3841</identifier><identifier>DOI: 10.1051/m2an/2017029</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>35B40 ; 35Q35 ; 65M12 ; Asymptotic properties ; Augmented Burgers equation ; Burgers equation ; Cauchy problems ; Convolution ; Decay rate ; Economic models ; large-time behavior ; Linear equations ; numerical approximation ; Well posed problems</subject><ispartof>ESAIM. Mathematical modelling and numerical analysis, 2017-11, Vol.51 (6), p.2367-2398</ispartof><rights>2017. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2017/06/m2an140081/m2an140081.html .</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-881b6c5a650033e6a5b5b632f606cc5c9c1f880fc56574e5c36e8d47359e79133</citedby><cites>FETCH-LOGICAL-c339t-881b6c5a650033e6a5b5b632f606cc5c9c1f880fc56574e5c36e8d47359e79133</cites><orcidid>0000-0002-8748-2086 ; 0000-0003-1870-9934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27913,27914</link.rule.ids></links><search><creatorcontrib>Ignat, Liviu I.</creatorcontrib><creatorcontrib>Pozo, Alejandro</creatorcontrib><title>A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation</title><title>ESAIM. Mathematical modelling and numerical analysis</title><description>In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented.</description><subject>35B40</subject><subject>35Q35</subject><subject>65M12</subject><subject>Asymptotic properties</subject><subject>Augmented Burgers equation</subject><subject>Burgers equation</subject><subject>Cauchy problems</subject><subject>Convolution</subject><subject>Decay rate</subject><subject>Economic models</subject><subject>large-time behavior</subject><subject>Linear equations</subject><subject>numerical approximation</subject><subject>Well posed problems</subject><issn>0764-583X</issn><issn>1290-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs3f0DAq2vzsckmx1r8goIiansLaTrbpnZ32yRb9N-7pcXTwMwz7wsPQteU3FEi6KBith4wQgvC9AnqUaZJxlVOT1GPFDLPhOLTc3QR44oQQkkuemg6xBEqn819dAES4LUNC8iSrwDPYGl3vgl4EyBC2Pl6gaNbQncqu21aArbtooI6wRzft91fiBi2rU2-qS_RWWnXEa6Os48-Hx8-Rs_Z-PXpZTQcZ45znTKl6Ew6YaUghHOQVszETHJWSiKdE047WipFSiekKHIQjktQ87zgQkOhKed9dHPI3YRm20JMZtW0oe4qDaNaM6o4ZR11e6BcaGIMUJpN8JUNv4YSs3dn9u7M0V2HZwfcxwQ__6wN30YWvBBGkYnRXxNO3xg17_wPud5wbw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Ignat, Liviu I.</creator><creator>Pozo, Alejandro</creator><general>EDP Sciences</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8748-2086</orcidid><orcidid>https://orcid.org/0000-0003-1870-9934</orcidid></search><sort><creationdate>20171101</creationdate><title>A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation</title><author>Ignat, Liviu I. ; Pozo, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-881b6c5a650033e6a5b5b632f606cc5c9c1f880fc56574e5c36e8d47359e79133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>35B40</topic><topic>35Q35</topic><topic>65M12</topic><topic>Asymptotic properties</topic><topic>Augmented Burgers equation</topic><topic>Burgers equation</topic><topic>Cauchy problems</topic><topic>Convolution</topic><topic>Decay rate</topic><topic>Economic models</topic><topic>large-time behavior</topic><topic>Linear equations</topic><topic>numerical approximation</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignat, Liviu I.</creatorcontrib><creatorcontrib>Pozo, Alejandro</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignat, Liviu I.</au><au>Pozo, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation</atitle><jtitle>ESAIM. Mathematical modelling and numerical analysis</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>51</volume><issue>6</issue><spage>2367</spage><epage>2398</epage><pages>2367-2398</pages><issn>0764-583X</issn><eissn>1290-3841</eissn><abstract>In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/m2an/2017029</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0002-8748-2086</orcidid><orcidid>https://orcid.org/0000-0003-1870-9934</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0764-583X |
ispartof | ESAIM. Mathematical modelling and numerical analysis, 2017-11, Vol.51 (6), p.2367-2398 |
issn | 0764-583X 1290-3841 |
language | eng |
recordid | cdi_proquest_journals_2199218312 |
source | Alma/SFX Local Collection |
subjects | 35B40 35Q35 65M12 Asymptotic properties Augmented Burgers equation Burgers equation Cauchy problems Convolution Decay rate Economic models large-time behavior Linear equations numerical approximation Well posed problems |
title | A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A03%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20semi-discrete%20large-time%20behavior%20preserving%20scheme%20for%20the%20augmented%20Burgers%20equation&rft.jtitle=ESAIM.%20Mathematical%20modelling%20and%20numerical%20analysis&rft.au=Ignat,%20Liviu%20I.&rft.date=2017-11-01&rft.volume=51&rft.issue=6&rft.spage=2367&rft.epage=2398&rft.pages=2367-2398&rft.issn=0764-583X&rft.eissn=1290-3841&rft_id=info:doi/10.1051/m2an/2017029&rft_dat=%3Cproquest_cross%3E2199218312%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2199218312&rft_id=info:pmid/&rfr_iscdi=true |