A semi-discrete large-time behavior preserving scheme for the augmented Burgers equation

In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2017-11, Vol.51 (6), p.2367-2398
Hauptverfasser: Ignat, Liviu I., Pozo, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we analyze the large-time behavior of the augmented Burgers equation. We first study the well-posedness of the Cauchy problem and obtain L1-Lp decay rates. The asymptotic behavior of the solution is obtained by showing that the influence of the convolution term K ∗ uxx is the same as uxx for large times. Then, we propose a semi-discrete numerical scheme that preserves this asymptotic behavior, by introducing two correcting factors in the discretization of the non-local term. Numerical experiments illustrating the accuracy of the results of the paper are also presented.
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an/2017029