An Artificial Intelligence Approach for Online Optimization of Flexible Manufacturing Systems
This paper addresses the problem of efficiently operating a flexible manufacturing machine in an electricity micro-grid featuring a high volatility of electricity prices. The problem of finding the optimal control policy is formulated as a sequential decision making problem under uncertainty where,...
Gespeichert in:
Veröffentlicht in: | Applied Mechanics and Materials 2018-07, Vol.882, p.96-108 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper addresses the problem of efficiently operating a flexible manufacturing machine in an electricity micro-grid featuring a high volatility of electricity prices. The problem of finding the optimal control policy is formulated as a sequential decision making problem under uncertainty where, at every time step the uncertainty comes from the lack of knowledge about fu-ture electricity consumption and future weather dependent energy prices. We propose to address this problem using deep reinforcement learning. To this purpose, we designed a deep learning architecture to forecast the load profile of future manufacturing schedule from past production time series. Combined with the forecast of future energy prices, the reinforcement-learning algorithm is trained to perform an online optimization of the production ma-chine in order to reduce the long-term energy costs. The concept is empirical-ly validated on a flexible production machine, where the machine speed can be optimized during the production. |
---|---|
ISSN: | 1660-9336 1662-7482 1662-7482 |
DOI: | 10.4028/www.scientific.net/AMM.882.96 |