Campus Drinking Water Supply System Performance Analysis Universitas Gadjah Mada of Yogyakarta

The decent quality, quantity, and continuity of Drinking Water Supply System (DWSS) are needed to support the activities of a campus. Universitas Gadjah Mada drinking water supply system (UGM-DWSS) provides 49 Water Fountains (WF) and 12 Water Dispensers (WD) to support daily activities for all the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2018-05, Vol.881, p.64-69
Hauptverfasser: Setiawan, Teguh, Triatmadja, Radianta, Kamulyan, Budi, Supraba, Intan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The decent quality, quantity, and continuity of Drinking Water Supply System (DWSS) are needed to support the activities of a campus. Universitas Gadjah Mada drinking water supply system (UGM-DWSS) provides 49 Water Fountains (WF) and 12 Water Dispensers (WD) to support daily activities for all the campus community. This research aimed at figuring out the performance of the existing UGM-DWSS against the current service pipeline distribution network so that the technical condition of the pipes’ pressure, the water consumption’s discharge, and the pumps’ use can be identified. The method used for analyzing is by implementing simulating the network performance using WaterNet program version 2.2 by which pipes network and its facilities performance including optimization of pipe diameter can be described. The simulation indicated that there was 80% idle capacity of the available water capacity. It is uneconomical to make any changes to the existing pipes’ condition considering the very high cost of the pipeline construction. Therefore, pump replacement was considered more feasible optimization approach. To obtain the optimal results, the pump should be replaced with 4 m3/hours capacity with 20 meters pump design head.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.881.64