Characterization of Laser Beam Welded Al0.5CoCrFeNi High-Entropy Alloy
High-entropy alloys (HEA), a new generation alloy system offer superior mechanical properties with solid solution strengthening. AlxCoCrFeNi-HEA is one such system being received more attention because of its specific yield strength and ductility. In the present work, Al0.5CoCrFeNi-HEA was prepared...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2018-08, Vol.775, p.448-453 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High-entropy alloys (HEA), a new generation alloy system offer superior mechanical properties with solid solution strengthening. AlxCoCrFeNi-HEA is one such system being received more attention because of its specific yield strength and ductility. In the present work, Al0.5CoCrFeNi-HEA was prepared by vacuum arc melting. The laser beam welding (LBW) was carried out on 1mm thick forged and homogenized HEA, with a beam power of 1.5 kW and at a traverse speed of 600 mm/min. The microstructural features of different regions of the weld were studied using scanning electron microscopy. The homogenized Al0.5CoCrFeNi-HEA have shown equiaxed grains of average size 60 μm. The weld metal showed a typical weld fusion zone microstructure with dendritic structure with a reduction in BCC phase due to minimal Al and Ni segregation ratio at interdendrites. Micro-chemical analysis with energy dispersive spectroscopy confirmed that there was no major segregation of elements in the weld fusion zone. The microhardness survey performed across the weld evidenced a reduction in hardness, as a consequence of significant reduction in Al-Ni rich hardening factor. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.775.448 |