The Influence of Ultrasound Enhancement during Friction Stir Welding of Aluminum to Steel
The innovative joining process of friction stir welding (FSW) offers a wide range of advantages for welding similar as well as dissimilar materials. Even for the field of poorly weldable material combinations like aluminum to steel with their strongly differing physical properties the method of FSW...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2018-04, Vol.767, p.351-359 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The innovative joining process of friction stir welding (FSW) offers a wide range of advantages for welding similar as well as dissimilar materials. Even for the field of poorly weldable material combinations like aluminum to steel with their strongly differing physical properties the method of FSW proved its capability for realizing dissimilar joints with tensile strengths up to more than 80 % of the aluminum base material. Trying to improve this value and other properties of the joints several approaches for hybrid friction stir welding processes were tested in the scientific community, whereas the ultrasound enhancement of FSW (USE-FSW) looked as one of the most promising reaching good results. To gain a deeper knowledge of the influence of the ultrasound on the friction stir welds different investigations were carried out in this paper. Therefore the method of USE-FSW was applied on two dissimilar aluminum/steel-joints with varying carbon content of the steel in this work. The material combinations AA6061/SAE1006 and AA6061/SAE1045 were welded successfully with and without additional power ultrasound. Afterwards a comparison between FSW-and USE-FSW-joints was carried out regarding the microstructure of the nugget and interface (IF) by light-microscopy as well as scanning electron microscopy. Furthermore the mechanical properties were characterized in a first step. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.767.351 |