Dim small target detection based on convolutinal neural network in star image

The detection of dim target in star image is a challenging task because of the low SNR target and complex background. In this paper, we present a deep learning approach to detecting dim small targets in single-frame star image under uneven background and different kinds of noises. We propose a fully...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-02, Vol.79 (7-8), p.4681-4698
Hauptverfasser: Xue, Danna, Sun, Jinqiu, Hu, Yaoqi, Zheng, Yushu, Zhu, Yu, Zhang, Yanning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of dim target in star image is a challenging task because of the low SNR target and complex background. In this paper, we present a deep learning approach to detecting dim small targets in single-frame star image under uneven background and different kinds of noises. We propose a fully convolutional neural network to achieve pixel-wise classification, which can complete target-background separation in a single stage rapidly. To train this network, we also build a synthetic star image dataset covering various noises and background distribution. The precise annotations of the target regions and centroid positions provided by this dataset make the supervised learning approach possible. Experimental results show that the proposed method outperforms the state-of-the-art in terms of higher detection rate and less false alarm caused by noises.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-019-7412-z