The spherical metric and univalent harmonic mappings
Let f = h + g ¯ be a harmonic univalent map in the unit disk D , where h and g are analytic. This paper finds an improved estimate for the second coefficient of h . Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci F...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2019-04, Vol.188 (4), p.703-716 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
f
=
h
+
g
¯
be a harmonic univalent map in the unit disk
D
, where
h
and
g
are analytic. This paper finds an improved estimate for the second coefficient of
h
. Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci Fenn Ser A I 9:3–25,
1984
), and by Sheil-Small (J Lond Math Soc 42:237–248,
1990
). When the sup-norm of the dilatation is less than 1, it is also shown that the spherical area of the covering surface of
h
is dominated by the spherical area of the covering surface of
f
. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-018-1160-4 |