The spherical metric and univalent harmonic mappings

Let f = h + g ¯ be a harmonic univalent map in the unit disk D , where h and g are analytic. This paper finds an improved estimate for the second coefficient of h . Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2019-04, Vol.188 (4), p.703-716
Hauptverfasser: Abu Muhanna, Yusuf, Ali, Rosihan M., Ponnusamy, Saminathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f = h + g ¯ be a harmonic univalent map in the unit disk D , where h and g are analytic. This paper finds an improved estimate for the second coefficient of h . Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci Fenn Ser A I 9:3–25, 1984 ), and by Sheil-Small (J Lond Math Soc 42:237–248, 1990 ). When the sup-norm of the dilatation is less than 1, it is also shown that the spherical area of the covering surface of h is dominated by the spherical area of the covering surface of f .
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-018-1160-4