Fusion categories for affine vertex algebras at admissible levels
The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open...
Gespeichert in:
Veröffentlicht in: | Selecta mathematica (Basel, Switzerland) Switzerland), 2019-06, Vol.25 (2), p.1-21, Article 27 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open Hopf links coincide with the corresponding normalized S-matrix entries of torus one-point functions. This is interpreted as a Verlinde formula beyond rational vertex operator algebras. A preparatory Theorem is a convenient formula for the fusion rules of rational principal W-algebras of any type. |
---|---|
ISSN: | 1022-1824 1420-9020 |
DOI: | 10.1007/s00029-019-0479-6 |