Fusion categories for affine vertex algebras at admissible levels

The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Selecta mathematica (Basel, Switzerland) Switzerland), 2019-06, Vol.25 (2), p.1-21, Article 27
1. Verfasser: Creutzig, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main result is that the category of ordinary modules of an affine vertex operator algebra of a simply laced Lie algebra at admissible level is rigid and thus a braided fusion category. If the level satisfies a certain coprime property then it is even a modular tensor category. In all cases open Hopf links coincide with the corresponding normalized S-matrix entries of torus one-point functions. This is interpreted as a Verlinde formula beyond rational vertex operator algebras. A preparatory Theorem is a convenient formula for the fusion rules of rational principal W-algebras of any type.
ISSN:1022-1824
1420-9020
DOI:10.1007/s00029-019-0479-6