Heat Transfer and Phase Formation through EBM 3D-Printing of Ti-6Al-4V Cylindrical Parts

3D-printing or additive manufacturing (AM) is a group of novel intensively developed production processes, through which a "printed" object is fabricated layer-by-layer in a desired intricate geometrical shape with following joining it into a monolithic bulk by means of electron beam (EB)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2018-02, Vol.383, p.190-195, Article 190
Hauptverfasser: Bamberger, Menachem, Popov, Vladimir, Katz-Demyanetz, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:3D-printing or additive manufacturing (AM) is a group of novel intensively developed production processes, through which a "printed" object is fabricated layer-by-layer in a desired intricate geometrical shape with following joining it into a monolithic bulk by means of electron beam (EB) or laser beam (LB) melting. The present study is concentrated on the production of simple-shaped (cylindrical) Ti-6Al-4V alloy samples by Electron Beam Melting (EBM). During the rapid cooling of as-printed material's layer, martensitic structure is formed while suppressing of material's diffusivity. Effect of heat transfer conditions on the microstructure and properties obtained has been investigated. Heat transfer modelling and simulation was done utilizing the ABAQUS software package. The microstructure of the obtained material has been characterized by means of SEM and XRD. Microhardness have been also determined and correlated with the simulation results.
ISSN:1012-0386
1662-9507
1662-9507
DOI:10.4028/www.scientific.net/DDF.383.190