Atomic Ordering and Disordering of Amorphous CoNiP Alloy

The structure of electrolytically deposited nanocrystalline alloys of the CoP-CoNiP systems under low-temperature heating was investigated by means of high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM), and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diffusion and defect data. Solid state data. Pt. A, Defect and diffusion forum Defect and diffusion forum, 2018-09, Vol.386, p.377-382
Hauptverfasser: Plotnikov, Vladimir S., Fedorets, Alexander F., Tkachev, Vladimir Vadimovich, Pustovalov, Evgeny Vladislavovich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The structure of electrolytically deposited nanocrystalline alloys of the CoP-CoNiP systems under low-temperature heating was investigated by means of high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF STEM), and analytical methods such as energy dispersive x-ray spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Structural relaxation and crystallization were investigated at temperatures from 150°C to 300°C. Structural and compositional inhomogeneities were found in the CoP-CoNiP alloys, while the local changes in composition were found to reach 15 at.%. Nanocrystals in the alloys grew most intensely in the presence of a free surface. It was determined that the local diffusion coefficient ranged from 1.2 to 2.4 10−18 m2/s, which could be explained by the surface diffusion prevalence. The data gathered in these investigations can be further used to predict the thermal stability of CoP-CoNiP alloys.
ISSN:1012-0386
1662-9507
1662-9507
DOI:10.4028/www.scientific.net/DDF.386.377