Temperature fiber sensing of Li-ion batteries under different environmental and operating conditions

In this work, a network of fiber sensors has been developed for real time, in situ, and in operando multipoint monitoring the surface temperature distribution on a smartphone Li-ion battery (LiB). Different temperature and relative humidity conditions are considered, in order to mimic the LiB respon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied thermal engineering 2019-02, Vol.149, p.1236-1243
Hauptverfasser: Nascimento, Micael, Ferreira, Marta S., Pinto, João L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, a network of fiber sensors has been developed for real time, in situ, and in operando multipoint monitoring the surface temperature distribution on a smartphone Li-ion battery (LiB). Different temperature and relative humidity conditions are considered, in order to mimic the LiB response in the dry, temperate, and cold climates. In total, the temperature variations that occur in five different locations of the LiB are monitored, during constant current charge and different discharge rates, under normal and abusive operating conditions, performing a thermal spatial mapping of the battery surface. In general, the sensors detect temperature variations according to the voltage signal change and faster variations of voltage usually translate in higher temperature rise at the LiB surface. For instance, under abusive discharge, where the voltage drop is fast, the temperature increases at least twice when compared to the normal operating conditions. Absolute temperature values as high as (65.0 ± 0.1) °C are detected by the optical sensor located near the electrodes, under the higher discharge rate (5.77 C) and dry climate. A thermal gradient is identified from the top to the bottom on the LiB surface during the experimental tests. A lower battery performance is observed when it operates under the cold climate, with maximum temperature variations of (30.0 ± 0.1) °C for the higher discharge rate. These results can be helpful to design of next generation of LiBs, improving a faster cooling in critical areas, in order to reduce accumulated heat and preventing consequences such as thermal runaway and failure.
ISSN:1359-4311
1873-5606
DOI:10.1016/j.applthermaleng.2018.12.135