An almost mixing of all orders property of algebraic dynamical systems

We consider dynamical systems, consisting of $\mathbb{Z}^{2}$ -actions by continuous automorphisms on shift-invariant subgroups of $\mathbb{F}_{p}^{\mathbb{Z}^{2}}$ , where $\mathbb{F}_{p}$ is the field of order $p$ . These systems provide natural generalizations of Ledrappier’s system, which was th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ergodic theory and dynamical systems 2019-05, Vol.39 (5), p.1211-1233
Hauptverfasser: ARENAS-CARMONA, L., BEREND, D., BERGELSON, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider dynamical systems, consisting of $\mathbb{Z}^{2}$ -actions by continuous automorphisms on shift-invariant subgroups of $\mathbb{F}_{p}^{\mathbb{Z}^{2}}$ , where $\mathbb{F}_{p}$ is the field of order $p$ . These systems provide natural generalizations of Ledrappier’s system, which was the first example of a 2-mixing $\mathbb{Z}^{2}$ -action that is not 3-mixing. Extending the results from our previous work on Ledrappier’s example, we show that, under quite mild conditions (namely, 2-mixing and that the subgroup defining the system is a principal Markov subgroup), these systems are almost strongly mixing of every order in the following sense: for each order, one just needs to avoid certain effectively computable logarithmically small sets of times at which there is a substantial deviation from mixing of this order.
ISSN:0143-3857
1469-4417
DOI:10.1017/etds.2017.60