Pressure-Driven Gas Flow through Nano-Channels at High Knudsen Numbers

Flow through nano-channels is important in several fields, ranging from natural porous media to microfluidics. It is therefore important to study the flow under controlled conditions. While quite a lot of work has been done on the flow of liquids through nano-channels, comparatively little systemati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nano research 2017-11, Vol.50, p.116-127
Hauptverfasser: Karakitsiou, Stamatina, Holst, Bodil, Hoffmann, Alex Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow through nano-channels is important in several fields, ranging from natural porous media to microfluidics. It is therefore important to study the flow under controlled conditions. While quite a lot of work has been done on the flow of liquids through nano-channels, comparatively little systematic work has been done on gas flow. Here we present a study of the flow of argon through nano-channels. We study samples with 2000 parallel nano-channels, with quadratic cross section. Each side is 100nm. The total length is 20 m. The nano-channels are made by patterning a Si wafer usingelectron beam lithography (EBL) followed by reactive ion etching and with subsequent anodic bonding between silicon and a borosilicate glass as a top plate. The samples were investigated using a home-built apparatus which allows us to measure flow at high Knudsen numbers (from around 10 to 550). We compare our results with a range of theoretical flow models. As innovation this work provides measurements of gas transport from the home-built apparatus. The system records the pressure profile of each sample and the mass flow rate is calculated numerically from the pressure data.
ISSN:1662-5250
1661-9897
1661-9897
DOI:10.4028/www.scientific.net/JNanoR.50.116