Pieri Rules for the Jack Polynomials in Superspace and the 6-Vertex Model

We present Pieri rules for the Jack polynomials in superspace. The coefficients in the Pieri rules are, except for an extra determinant, products of quotients of linear factors in α (expressed, as in the usual Jack polynomial case, in terms of certain hook lengths in a Ferrers’ diagram). We show tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2019-04, Vol.20 (4), p.1051-1091
Hauptverfasser: Gatica, Jessica, Jones, Miles, Lapointe, Luc
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present Pieri rules for the Jack polynomials in superspace. The coefficients in the Pieri rules are, except for an extra determinant, products of quotients of linear factors in α (expressed, as in the usual Jack polynomial case, in terms of certain hook lengths in a Ferrers’ diagram). We show that, surprisingly, the extra determinant is related to the partition function of the 6-vertex model. We give, as a conjecture, the Pieri rules for the Macdonald polynomials in superspace.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-018-00753-4