Cascade PID Control of a Reactive Distillation Process for Biodiesel Production: A Comparison with Conventional PID Control

The combination of chemical reaction and distillation, which is analogous to inserting a chemical reactor into a distillation column, is a phenomenon that can be accomplished using a single piece of equipment known as a reactive distillation column, and the phenomenon is, thereby, referred to as rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering research in Africa (Print) 2018-01, Vol.35, p.134-144
Hauptverfasser: Adeyi, Victoria Abosede, Giwa, Abdulwahab, Adeyi, Abel Adekanmi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The combination of chemical reaction and distillation, which is analogous to inserting a chemical reactor into a distillation column, is a phenomenon that can be accomplished using a single piece of equipment known as a reactive distillation column, and the phenomenon is, thereby, referred to as reactive distillation process. Because of this combination, a lot of benefits such as improving reaction conversion, suppressing side reactions and utilizing heat of reaction for mass transfer operation can be achieved. However, this combination has made the control of this process a little bit challenging because of some disturbances that normally affect its smooth running. Therefore, cascade control method, being a type that can be used to handle any disturbance before it affects the main process, is applied in this work to carry out the control of a biodiesel reactive distillation process using proportional-integral-derivative (PID) control algorithm. The responses of the process towards the applications of step changes to the input variable (reboiler duty) of the process revealed that it was stable because it could attain steady states. Also, the closed-loop simulations showed that cascade PID controller was better for the control of the process than the conventional PID controller owing to the fact that the responses of the cascade PID control system, upon the application of step changes to the set-point value of the controlled variable, were found to get to the desired setpoint faster and in a better way than those of the conventional PID control system. Moreover, the superiority of the cascade PID controller over the conventional one was demonstrated by the estimation of the integral absolute error (IAE) and integral squared error (ISE) of the cascade control system, which were obtained to be less than those of the conventional PID control system.
ISSN:1663-3571
1663-4144
1663-4144
DOI:10.4028/www.scientific.net/JERA.35.134