Globally Lipschitz minimizers for variational problems with linear growth
We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient compactness p...
Gespeichert in:
Veröffentlicht in: | ESAIM. Control, optimisation and calculus of variations optimisation and calculus of variations, 2018-10, Vol.24 (4), p.1395-1413 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the minimization of convex, variational integrals of linear growth among all functions in the Sobolev space W1,1 with prescribed boundary values (or its equivalent formulation as a boundary value problem for a degenerately elliptic Euler–Lagrange equation). Due to insufficient compactness properties of these Dirichlet classes, the existence of solutions does not follow in a standard way by the direct method in the calculus of variations and in fact might fail, as it is well-known already for the non-parametric minimal surface problem. Assuming radial structure, we establish a necessary and sufficient condition on the integrand such that the Dirichlet problem is in general solvable, in the sense that a Lipschitz solution exists for any regular domain and all prescribed regular boundary values, via the construction of appropriate barrier functions in the tradition of Serrin’s paper [J. Serrin, Philos. Trans. R. Soc. Lond., Ser. A 264 (1969) 413–496]. |
---|---|
ISSN: | 1292-8119 1262-3377 |
DOI: | 10.1051/cocv/2017065 |