Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations

We consider a semilinear parabolic equation with a large class of nonlinearities without any growth conditions. We discretize the problem with a discontinuous Galerkin scheme dG(0) in time (which is a variant of the implicit Euler scheme) and with conforming finite elements in space. The main contri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ESAIM. Mathematical modelling and numerical analysis 2018-11, Vol.52 (6), p.2307-2325
Hauptverfasser: Meidner, Dominik, Vexler, Boris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a semilinear parabolic equation with a large class of nonlinearities without any growth conditions. We discretize the problem with a discontinuous Galerkin scheme dG(0) in time (which is a variant of the implicit Euler scheme) and with conforming finite elements in space. The main contribution of this paper is the proof of the uniform boundedness of the discrete solution. This allows us to obtain optimal error estimates with respect to various norms.
ISSN:0764-583X
1290-3841
DOI:10.1051/m2an/2018040