Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations
We consider a semilinear parabolic equation with a large class of nonlinearities without any growth conditions. We discretize the problem with a discontinuous Galerkin scheme dG(0) in time (which is a variant of the implicit Euler scheme) and with conforming finite elements in space. The main contri...
Gespeichert in:
Veröffentlicht in: | ESAIM. Mathematical modelling and numerical analysis 2018-11, Vol.52 (6), p.2307-2325 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a semilinear parabolic equation with a large class of nonlinearities without any growth conditions. We discretize the problem with a discontinuous Galerkin scheme dG(0) in time (which is a variant of the implicit Euler scheme) and with conforming finite elements in space. The main contribution of this paper is the proof of the uniform boundedness of the discrete solution. This allows us to obtain optimal error estimates with respect to various norms. |
---|---|
ISSN: | 0764-583X 1290-3841 |
DOI: | 10.1051/m2an/2018040 |