On universal realizability of spectra

A list Λ={λ1,λ2,…,λn} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix. The list Λ is said to be universally realizable (UR) if it is the spectrum of a nonnegative matrix for each possible Jordan canonical form allowed by Λ. It is well known that a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-02, Vol.563, p.353-372
Hauptverfasser: Julio, Ana I., Marijuán, Carlos, Pisonero, Miriam, Soto, Ricardo L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A list Λ={λ1,λ2,…,λn} of complex numbers is said to be realizable if it is the spectrum of an entrywise nonnegative matrix. The list Λ is said to be universally realizable (UR) if it is the spectrum of a nonnegative matrix for each possible Jordan canonical form allowed by Λ. It is well known that an n×n nonnegative matrix A is co-spectral to a nonnegative matrix B with constant row sums. In this paper, we extend the co-spectrality between A and B to a similarity between A and B, when the Perron eigenvalue is simple. We also show that if ϵ≥0 and Λ={λ1,λ2,…,λn} is UR, then {λ1+ϵ,λ2,…,λn} is also UR. We give counter-examples for the cases: Λ={λ1,λ2,…,λn} is UR implies {λ1+ϵ,λ2−ϵ,λ3,…,λn} is UR, and Λ1,Λ2 are UR implies Λ1∪Λ2 is UR.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.11.013