On maps preserving products of matrices
Let D be a division ring with characteristic different from 2, and let R=Mn(D). The first goal of this paper is to describe an additive map f:R→R satisfying the identity f(x)f(y)=m for every x,y∈R such that xy=k, where m,k∈R are fixed invertible elements. Additionally, let M=Mn(C), the set of all n×...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2019-02, Vol.563, p.193-206 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let D be a division ring with characteristic different from 2, and let R=Mn(D). The first goal of this paper is to describe an additive map f:R→R satisfying the identity f(x)f(y)=m for every x,y∈R such that xy=k, where m,k∈R are fixed invertible elements. Additionally, let M=Mn(C), the set of all n×n matrices with complex entries. We will describe a bijective linear map g:M→M satisfying g(X)∘g(Y)=M whenever X∘Y=K for every X,Y∈M, where M,K∈M are fixed, and ∘ denotes the Jordan product. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2018.10.029 |