On maps preserving products of matrices

Let D be a division ring with characteristic different from 2, and let R=Mn(D). The first goal of this paper is to describe an additive map f:R→R satisfying the identity f(x)f(y)=m for every x,y∈R such that xy=k, where m,k∈R are fixed invertible elements. Additionally, let M=Mn(C), the set of all n×...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2019-02, Vol.563, p.193-206
Hauptverfasser: Catalano, Louisa, Hsu, Samuel, Kapalko, Regan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let D be a division ring with characteristic different from 2, and let R=Mn(D). The first goal of this paper is to describe an additive map f:R→R satisfying the identity f(x)f(y)=m for every x,y∈R such that xy=k, where m,k∈R are fixed invertible elements. Additionally, let M=Mn(C), the set of all n×n matrices with complex entries. We will describe a bijective linear map g:M→M satisfying g(X)∘g(Y)=M whenever X∘Y=K for every X,Y∈M, where M,K∈M are fixed, and ∘ denotes the Jordan product.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.10.029