Extreme Spectra Realization by Nonsymmetric Tridiagonal and Nonsymmetric Arrow Matrices
We consider the following inverse extreme eigenvalue problem: given the real numbers {λ1j,λjj}j=1n and the real vector x(n)=x1,x2,…,xn, to construct a nonsymmetric tridiagonal matrix and a nonsymmetric arrow matrix such that {λ1j,λjj}j=1n are the minimal and the maximal eigenvalues of each one of th...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2019-01, Vol.2019 (2019), p.1-7 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the following inverse extreme eigenvalue problem: given the real numbers {λ1j,λjj}j=1n and the real vector x(n)=x1,x2,…,xn, to construct a nonsymmetric tridiagonal matrix and a nonsymmetric arrow matrix such that {λ1j,λjj}j=1n are the minimal and the maximal eigenvalues of each one of their leading principal submatrices, and x(n),λn(n) is an eigenpair of the matrix. We give sufficient conditions for the existence of such matrices. Moreover our results generate an algorithmic procedure to compute a unique solution matrix. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2019/3459017 |