Adaptive Chattering Free Neural Network Based Sliding Mode Control for Trajectory Tracking of Redundant Parallel Manipulators

In this paper, an adaptive chattering free neural network‐based sliding mode control (ACFN‐SMC) method is proposed for tracking trajectories of redundant parallel manipulators. ACFN‐SMC combines adaptive chattering free radial basis function neural networks (RBFN), sliding mode control with online u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2019-03, Vol.21 (2), p.908-923
Hauptverfasser: Nguyen, Van‐Truong, Lin, Chyi‐Yeu, Su, Shun‐Feng, Tran, Quoc‐Viet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, an adaptive chattering free neural network‐based sliding mode control (ACFN‐SMC) method is proposed for tracking trajectories of redundant parallel manipulators. ACFN‐SMC combines adaptive chattering free radial basis function neural networks (RBFN), sliding mode control with online updating the robust term parameters, and a nonlinear compensation item for reducing tracking errors. The stability of the closed‐loop system with modeling uncertainties, frictional uncertainties, and external disturbances is ensured by using the Lyapunov method. The proposed controller has a simple structure and little computation time while securing dynamic performance with expected quality in tracking trajectories of redundant parallel manipulators. In addition, the ACFN‐SMC strategy does not need to know the upper bound of any uncertainties. From the simulation results, it is evident that the proposed control strategy not only has significantly higher robustness capability for uncertainties but also can achieve better chattering elimination when compared with those using existing intelligent control schemes.
ISSN:1561-8625
1934-6093
DOI:10.1002/asjc.1789