Magnetic resonance imaging of ethyl-nitrosourea-induced rat gliomas: a model for experimental therapeutics of low-grade gliomas

Human low-grade gliomas represent a population of brain tumors that remain a therapeutic challenge. Preclinical evaluation of agents, to test their preventive or therapeutic efficacy in these tumors, requires the use of animal models. Spontaneous gliomas develop in models of chemically induced carci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neuro-oncology 2001-07, Vol.53 (3), p.243-257
Hauptverfasser: KISH, Phillip E, BLAIVAS, Mila, STRAWDERMAN, Myla, MURASZKO, Karin M, ROSS, Donald A, ROSS, Brian D, MCMAHON, Gerald
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Human low-grade gliomas represent a population of brain tumors that remain a therapeutic challenge. Preclinical evaluation of agents, to test their preventive or therapeutic efficacy in these tumors, requires the use of animal models. Spontaneous gliomas develop in models of chemically induced carcinogenesis, such as in the transplacental N-ethyl-N-nitrosourea (ENU) rat model. However, without the ability to detect initial tumor formation, multiplicity or to measure growth rates, it is difficult to test compounds for their interventional or preventional capabilities. In this study Fisher-334 rats, treated transplacentally with ENU, underwent magnetic resonance imaging (MRI) examination in order to evaluate this approach for detection of tumor formation and growth. ENU-induced intracranial cerebral tumors were first observable in T2-weighted images beginning at 4 months of age and grew with a mean doubling time of 0.487 +/- 0.112 months. These tumors were found histologically to be predominately mixed gliomas. Two therapeutic interventions were evaluated using MRI, vitamin A (all-trans retinol palmitate, RP), as a chemopreventative agent and the anti-angiogenic drug SU-5416. RP was found to significantly delay the time to first tumor observation by one month (P = 0.05). No differences in rates of tumor formation or growth rates were observed between control and RP-treated groups. MRI studies of rats treated with SU-5416 resulted in reduction in tumor growth rates compared to matched controls. These results show that MRI can be used to provide novel information relating to the therapeutic efficacy of agents against the ENU-induced tumor model.
ISSN:0167-594X
1573-7373
DOI:10.1023/A:1012222522359