iCLAP: shape recognition by combining proprioception and touch sensing

For humans, both the proprioception and touch sensing are highly utilized when performing haptic perception. However, most approaches in robotics use only either proprioceptive data or touch data in haptic object recognition. In this paper, we present a novel method named Iterative Closest Labeled P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autonomous robots 2019-04, Vol.43 (4), p.993-1004
Hauptverfasser: Luo, Shan, Mou, Wenxuan, Althoefer, Kaspar, Liu, Hongbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For humans, both the proprioception and touch sensing are highly utilized when performing haptic perception. However, most approaches in robotics use only either proprioceptive data or touch data in haptic object recognition. In this paper, we present a novel method named Iterative Closest Labeled Point (iCLAP) to link the kinesthetic cues and tactile patterns fundamentally and also introduce its extensions to recognize object shapes. In the training phase, the iCLAP first clusters the features of tactile readings into a codebook and assigns these features with distinct label numbers. A 4D point cloud of the object is then formed by taking the label numbers of the tactile features as an additional dimension to the 3D sensor positions; hence, the two sensing modalities are merged to achieve a synthesized perception of the touched object. Furthermore, we developed and validated hybrid fusion strategies, product based and weighted sum based, to combine decisions obtained from iCLAP and single sensing modalities. Extensive experimentation demonstrates a dramatic improvement of object recognition using the proposed methods and it shows great potential to enhance robot perception ability.
ISSN:0929-5593
1573-7527
DOI:10.1007/s10514-018-9777-7