Characterization of the magnetic phases of holmium nanofilms via magnetic neutron scattering

•Magnetic phases of Ho films are associated to magnetic neutron scattering intensity.•Spin-spin correlation functions impel the shape of the neutron scattering intensity.•Simulation of neutron scattering can be used as a tool to identify magnetic phases. Magnetic phases of holmium films are associat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2019-04, Vol.475, p.643-646
Hauptverfasser: Mello, V.D., Santiago, F.A.L., Anselmo, D.H.A.L., Vasconcelos, M.S., Almeida, N.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Magnetic phases of Ho films are associated to magnetic neutron scattering intensity.•Spin-spin correlation functions impel the shape of the neutron scattering intensity.•Simulation of neutron scattering can be used as a tool to identify magnetic phases. Magnetic phases of holmium films are associated with the intensity of the magnetic neutron scattering. It is shown that each magnetic phase of the system (fan, helifan, spin-slip, helix and ferromagnetic) exhibits a characteristic profile of scattering which can be used as a fingerprint to identify it. In this paper, we present theoretical results obtained for holmium films 24 monolayers thick at a fixed temperature and in the presence of a dc magnetic field applied along the basal plane. A self-consistent local field algorithm was used to obtain the equilibrium configurations of the magnetic moments of the film and, with these results, the spin-spin correlation functions which determine the shape of the neutron scattering intensity were calculated.
ISSN:0304-8853
1873-4766
DOI:10.1016/j.jmmm.2018.12.006