2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity

[Display omitted] •TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2019-06, Vol.246, p.12-20
Hauptverfasser: Li, Yujie, Yin, Zhaohua, Ji, Guanrui, Liang, Zhangqian, Xue, Yanjun, Guo, Yichen, Tian, Jian, Wang, Xinzhen, Cui, Hongzhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 12
container_title Applied catalysis. B, Environmental
container_volume 246
creator Li, Yujie
Yin, Zhaohua
Ji, Guanrui
Liang, Zhangqian
Xue, Yanjun
Guo, Yichen
Tian, Jian
Wang, Xinzhen
Cui, Hongzhi
description [Display omitted] •TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297 μmol g−1 h−1.•The Ti3C2 MXene acts as a source of titanium and a pathway transferring photo-generated electrons.•The MoS2 on the (101) facets of TiO2 can capture photogenerated electrons of (101) facets and act as reduction active sites. Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO2 nanosheets (NSs) are in situ grown on highly conductive Ti3C2 MXene and then MoS2 NSs are deposited on the (101) facets of TiO2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of Ti3C2@TiO2@MoS2 composite is achieved. With an optimized MoS2 loading amounts (15 wt%), the Ti3C2@TiO2@MoS2 composite shows a remarkable enhancement in the photocatalytic H2 evolution reaction compared with Ti3C2@TiO2 composite and TiO2 NS. It also shows good stability under the reaction condition. This arises from: (i) the in situ growth of TiO2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti3C2, which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS2 NSs are deposited on the electrons-rich (101) facets of TiO2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs.
doi_str_mv 10.1016/j.apcatb.2019.01.051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2195247952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0926337319300517</els_id><sourcerecordid>2195247952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-e93ca9d221f51f3bb5e53a8931c7dd2cefec7112dd62adc0858b1316e492b01c3</originalsourceid><addsrcrecordid>eNp9UcFu2zAMFYoVWNbuD3YQsEt3sCNKcWxfCgzZ1hZo0cMyYDdBluhaRid5ktI2_7KPrVLv0FMBggTBR_KRj5BPwEpgsF6OpZq0Sl3JGbQlg5JVcEQW0NSiEE0j3pEFa_m6EKIW78mHGEfGGBe8WZB__NvyxeiACYMfd04n6x31Pd1aseH05jc6XN74n5w65XwcEFNcbu3t65w-2jRQfJp8REPPGIMvtFf6UEn-UQVD0Q3K6VycBp98Zqvu98lqOuxN8Hfo6BS82c27VQ4PNu1PyXGv7iN-_B9PyK8f37eby-L69uJq8_W60KKGVGArtGoN59BX0Iuuq7ASqmkF6NoYrrFHXQNwY9ZcGc2aqulAwBpXLe8YaHFCPs9zM4e_O4xJjn4XXF4pObQVX9XZZdRqRungYwzYyynYPyrsJTB50EGOctZBHnSQDGTWIbedz22YL3iwGGTUFg-vsAF1ksbbtwc8AxwDlCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195247952</pqid></control><display><type>article</type><title>2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Yujie ; Yin, Zhaohua ; Ji, Guanrui ; Liang, Zhangqian ; Xue, Yanjun ; Guo, Yichen ; Tian, Jian ; Wang, Xinzhen ; Cui, Hongzhi</creator><creatorcontrib>Li, Yujie ; Yin, Zhaohua ; Ji, Guanrui ; Liang, Zhangqian ; Xue, Yanjun ; Guo, Yichen ; Tian, Jian ; Wang, Xinzhen ; Cui, Hongzhi</creatorcontrib><description>[Display omitted] •TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297 μmol g−1 h−1.•The Ti3C2 MXene acts as a source of titanium and a pathway transferring photo-generated electrons.•The MoS2 on the (101) facets of TiO2 can capture photogenerated electrons of (101) facets and act as reduction active sites. Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO2 nanosheets (NSs) are in situ grown on highly conductive Ti3C2 MXene and then MoS2 NSs are deposited on the (101) facets of TiO2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of Ti3C2@TiO2@MoS2 composite is achieved. With an optimized MoS2 loading amounts (15 wt%), the Ti3C2@TiO2@MoS2 composite shows a remarkable enhancement in the photocatalytic H2 evolution reaction compared with Ti3C2@TiO2 composite and TiO2 NS. It also shows good stability under the reaction condition. This arises from: (i) the in situ growth of TiO2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti3C2, which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS2 NSs are deposited on the electrons-rich (101) facets of TiO2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs.</description><identifier>ISSN: 0926-3373</identifier><identifier>EISSN: 1873-3883</identifier><identifier>DOI: 10.1016/j.apcatb.2019.01.051</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Charge transfer ; Current carriers ; Exposed active facet ; Exposure ; Heterojunctions ; Holes (electron deficiencies) ; Hydrogen production ; Molybdenum disulfide ; MoS2 nanosheets ; MXenes ; Nanosheets ; Photocatalysis ; Photocatalysts ; Photocatalytic H2 production ; Photoelectrons ; Recombination ; Separation ; Ti3C2 MXene ; TiO2 nanosheets ; Titanium dioxide</subject><ispartof>Applied catalysis. B, Environmental, 2019-06, Vol.246, p.12-20</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 5, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-e93ca9d221f51f3bb5e53a8931c7dd2cefec7112dd62adc0858b1316e492b01c3</citedby><cites>FETCH-LOGICAL-c371t-e93ca9d221f51f3bb5e53a8931c7dd2cefec7112dd62adc0858b1316e492b01c3</cites><orcidid>0000-0002-2212-0295 ; 0000-0002-9334-9409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0926337319300517$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Yin, Zhaohua</creatorcontrib><creatorcontrib>Ji, Guanrui</creatorcontrib><creatorcontrib>Liang, Zhangqian</creatorcontrib><creatorcontrib>Xue, Yanjun</creatorcontrib><creatorcontrib>Guo, Yichen</creatorcontrib><creatorcontrib>Tian, Jian</creatorcontrib><creatorcontrib>Wang, Xinzhen</creatorcontrib><creatorcontrib>Cui, Hongzhi</creatorcontrib><title>2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity</title><title>Applied catalysis. B, Environmental</title><description>[Display omitted] •TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297 μmol g−1 h−1.•The Ti3C2 MXene acts as a source of titanium and a pathway transferring photo-generated electrons.•The MoS2 on the (101) facets of TiO2 can capture photogenerated electrons of (101) facets and act as reduction active sites. Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO2 nanosheets (NSs) are in situ grown on highly conductive Ti3C2 MXene and then MoS2 NSs are deposited on the (101) facets of TiO2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of Ti3C2@TiO2@MoS2 composite is achieved. With an optimized MoS2 loading amounts (15 wt%), the Ti3C2@TiO2@MoS2 composite shows a remarkable enhancement in the photocatalytic H2 evolution reaction compared with Ti3C2@TiO2 composite and TiO2 NS. It also shows good stability under the reaction condition. This arises from: (i) the in situ growth of TiO2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti3C2, which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS2 NSs are deposited on the electrons-rich (101) facets of TiO2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs.</description><subject>Charge transfer</subject><subject>Current carriers</subject><subject>Exposed active facet</subject><subject>Exposure</subject><subject>Heterojunctions</subject><subject>Holes (electron deficiencies)</subject><subject>Hydrogen production</subject><subject>Molybdenum disulfide</subject><subject>MoS2 nanosheets</subject><subject>MXenes</subject><subject>Nanosheets</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Photocatalytic H2 production</subject><subject>Photoelectrons</subject><subject>Recombination</subject><subject>Separation</subject><subject>Ti3C2 MXene</subject><subject>TiO2 nanosheets</subject><subject>Titanium dioxide</subject><issn>0926-3373</issn><issn>1873-3883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UcFu2zAMFYoVWNbuD3YQsEt3sCNKcWxfCgzZ1hZo0cMyYDdBluhaRid5ktI2_7KPrVLv0FMBggTBR_KRj5BPwEpgsF6OpZq0Sl3JGbQlg5JVcEQW0NSiEE0j3pEFa_m6EKIW78mHGEfGGBe8WZB__NvyxeiACYMfd04n6x31Pd1aseH05jc6XN74n5w65XwcEFNcbu3t65w-2jRQfJp8REPPGIMvtFf6UEn-UQVD0Q3K6VycBp98Zqvu98lqOuxN8Hfo6BS82c27VQ4PNu1PyXGv7iN-_B9PyK8f37eby-L69uJq8_W60KKGVGArtGoN59BX0Iuuq7ASqmkF6NoYrrFHXQNwY9ZcGc2aqulAwBpXLe8YaHFCPs9zM4e_O4xJjn4XXF4pObQVX9XZZdRqRungYwzYyynYPyrsJTB50EGOctZBHnSQDGTWIbedz22YL3iwGGTUFg-vsAF1ksbbtwc8AxwDlCE</recordid><startdate>20190605</startdate><enddate>20190605</enddate><creator>Li, Yujie</creator><creator>Yin, Zhaohua</creator><creator>Ji, Guanrui</creator><creator>Liang, Zhangqian</creator><creator>Xue, Yanjun</creator><creator>Guo, Yichen</creator><creator>Tian, Jian</creator><creator>Wang, Xinzhen</creator><creator>Cui, Hongzhi</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-2212-0295</orcidid><orcidid>https://orcid.org/0000-0002-9334-9409</orcidid></search><sort><creationdate>20190605</creationdate><title>2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity</title><author>Li, Yujie ; Yin, Zhaohua ; Ji, Guanrui ; Liang, Zhangqian ; Xue, Yanjun ; Guo, Yichen ; Tian, Jian ; Wang, Xinzhen ; Cui, Hongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-e93ca9d221f51f3bb5e53a8931c7dd2cefec7112dd62adc0858b1316e492b01c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charge transfer</topic><topic>Current carriers</topic><topic>Exposed active facet</topic><topic>Exposure</topic><topic>Heterojunctions</topic><topic>Holes (electron deficiencies)</topic><topic>Hydrogen production</topic><topic>Molybdenum disulfide</topic><topic>MoS2 nanosheets</topic><topic>MXenes</topic><topic>Nanosheets</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Photocatalytic H2 production</topic><topic>Photoelectrons</topic><topic>Recombination</topic><topic>Separation</topic><topic>Ti3C2 MXene</topic><topic>TiO2 nanosheets</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yujie</creatorcontrib><creatorcontrib>Yin, Zhaohua</creatorcontrib><creatorcontrib>Ji, Guanrui</creatorcontrib><creatorcontrib>Liang, Zhangqian</creatorcontrib><creatorcontrib>Xue, Yanjun</creatorcontrib><creatorcontrib>Guo, Yichen</creatorcontrib><creatorcontrib>Tian, Jian</creatorcontrib><creatorcontrib>Wang, Xinzhen</creatorcontrib><creatorcontrib>Cui, Hongzhi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Applied catalysis. B, Environmental</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yujie</au><au>Yin, Zhaohua</au><au>Ji, Guanrui</au><au>Liang, Zhangqian</au><au>Xue, Yanjun</au><au>Guo, Yichen</au><au>Tian, Jian</au><au>Wang, Xinzhen</au><au>Cui, Hongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity</atitle><jtitle>Applied catalysis. B, Environmental</jtitle><date>2019-06-05</date><risdate>2019</risdate><volume>246</volume><spage>12</spage><epage>20</epage><pages>12-20</pages><issn>0926-3373</issn><eissn>1873-3883</eissn><abstract>[Display omitted] •TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297 μmol g−1 h−1.•The Ti3C2 MXene acts as a source of titanium and a pathway transferring photo-generated electrons.•The MoS2 on the (101) facets of TiO2 can capture photogenerated electrons of (101) facets and act as reduction active sites. Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO2 nanosheets (NSs) are in situ grown on highly conductive Ti3C2 MXene and then MoS2 NSs are deposited on the (101) facets of TiO2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of Ti3C2@TiO2@MoS2 composite is achieved. With an optimized MoS2 loading amounts (15 wt%), the Ti3C2@TiO2@MoS2 composite shows a remarkable enhancement in the photocatalytic H2 evolution reaction compared with Ti3C2@TiO2 composite and TiO2 NS. It also shows good stability under the reaction condition. This arises from: (i) the in situ growth of TiO2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti3C2, which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS2 NSs are deposited on the electrons-rich (101) facets of TiO2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apcatb.2019.01.051</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2212-0295</orcidid><orcidid>https://orcid.org/0000-0002-9334-9409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-3373
ispartof Applied catalysis. B, Environmental, 2019-06, Vol.246, p.12-20
issn 0926-3373
1873-3883
language eng
recordid cdi_proquest_journals_2195247952
source Elsevier ScienceDirect Journals
subjects Charge transfer
Current carriers
Exposed active facet
Exposure
Heterojunctions
Holes (electron deficiencies)
Hydrogen production
Molybdenum disulfide
MoS2 nanosheets
MXenes
Nanosheets
Photocatalysis
Photocatalysts
Photocatalytic H2 production
Photoelectrons
Recombination
Separation
Ti3C2 MXene
TiO2 nanosheets
Titanium dioxide
title 2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=2D/2D/2D%20heterojunction%20of%20Ti3C2%20MXene/MoS2%20nanosheets/TiO2%20nanosheets%20with%20exposed%20(001)%20facets%20toward%20enhanced%20photocatalytic%20hydrogen%20production%20activity&rft.jtitle=Applied%20catalysis.%20B,%20Environmental&rft.au=Li,%20Yujie&rft.date=2019-06-05&rft.volume=246&rft.spage=12&rft.epage=20&rft.pages=12-20&rft.issn=0926-3373&rft.eissn=1873-3883&rft_id=info:doi/10.1016/j.apcatb.2019.01.051&rft_dat=%3Cproquest_cross%3E2195247952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195247952&rft_id=info:pmid/&rft_els_id=S0926337319300517&rfr_iscdi=true