2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity
[Display omitted] •TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297...
Gespeichert in:
Veröffentlicht in: | Applied catalysis. B, Environmental Environmental, 2019-06, Vol.246, p.12-20 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•TiO2 nanosheets are in situ grown on highly conductive Ti3C2 MXene.•MoS2 nanosheets are deposited on (101) facets of TiO2 nanosheets with mainly exposed high-active (001) facets.•The Ti3C2@TiO2@MoS2 photocatalyst is highly active for water splitting to produce hydrogen at 6425.297 μmol g−1 h−1.•The Ti3C2 MXene acts as a source of titanium and a pathway transferring photo-generated electrons.•The MoS2 on the (101) facets of TiO2 can capture photogenerated electrons of (101) facets and act as reduction active sites.
Exposing the highly active facets and hybridizing the photocatalyst with appropriate cocatalysts with right placement have been regarded as a powerful approach to high performance photocatalysts. Herein, TiO2 nanosheets (NSs) are in situ grown on highly conductive Ti3C2 MXene and then MoS2 NSs are deposited on the (101) facets of TiO2 NSs with mainly exposed high-active (001) facets through a two-step hydrothermal method. And a unique 2D-2D-2D structure of Ti3C2@TiO2@MoS2 composite is achieved. With an optimized MoS2 loading amounts (15 wt%), the Ti3C2@TiO2@MoS2 composite shows a remarkable enhancement in the photocatalytic H2 evolution reaction compared with Ti3C2@TiO2 composite and TiO2 NS. It also shows good stability under the reaction condition. This arises from: (i) the in situ growth of TiO2 NSs construct strong interfacial contact with excellent electronic conductivity of Ti3C2, which facilitates the separation of carriers; (ii) the coexposed (101) and (001) facets can form a surface heterojunction within single TiO2 NS, which is beneficial for the transfer and separation of charge carriers; and (iii) the MoS2 NSs are deposited on the electrons-rich (101) facets of TiO2 NSs, which not only effectively reduces the charge carriers recombination rate by capturing photoelectrons, but also makes TiO2 NSs expose more highly active (001) facets to afford high-efficiency photogeneration of electron-hole pairs. |
---|---|
ISSN: | 0926-3373 1873-3883 |
DOI: | 10.1016/j.apcatb.2019.01.051 |