Uncountable Strongly Surjective Linear Orders
We call a linear order L strongly surjective if whenever K is a suborder of L then there is a surjective f : L → K so that x ≤ y implies f ( x ) ≤ f ( y ). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo,...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2019-03, Vol.36 (1), p.43-64 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 64 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Order (Dordrecht) |
container_volume | 36 |
creator | Soukup, Dániel T. |
description | We call a linear order
L strongly surjective
if whenever
K
is a suborder of
L
then there is a surjective
f
:
L
→
K
so that
x
≤
y
implies
f
(
x
) ≤
f
(
y
). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo, R. Carroy and A. Marcone. In particular, ♢
+
implies the existence of a lexicographically ordered Suslin tree which is strongly surjective and minimal; every strongly surjective linear order must be an Aronszajn type under
2
ℵ
0
<
2
ℵ
1
or in the Cohen and other canonical models (where
2
ℵ
0
=
2
ℵ
1
); finally, we prove that it is consistent with CH that there are no uncountable strongly surjective linear orders at all. |
doi_str_mv | 10.1007/s11083-018-9454-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2194644296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2194644296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ddc5df422d0a4b87c221a079026a7592dd71664eb4a64f678010802dfef0fd413</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoWEc_wF3BdfS9NE2apQzqCIVZjLMOaZMMLbUdk1aYv7dDBVeu3ubcex-HkHuERwSQTxERiowCFlTxnFN5QRLMJaOKyeySJIBC0gIUvyY3MbYAkKlcJITu-3qY-tFUnUt3Yxj6Q3dKd1NoXT023y4tm96ZkG6DdSHekitvuujufu-K7F9fPtYbWm7f3tfPJa0zFCO1ts6t54xZMLwqZM0YGpAKmDAyV8xaiUJwV3EjuBeygPl5YNY7D95yzFbkYek9huFrcnHU7TCFfp7UDBUXnDMlZgoXqg5DjMF5fQzNpwknjaDPVvRiRc9W9NmKlnOGLZk4s_3Bhb_m_0M_puZjaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2194644296</pqid></control><display><type>article</type><title>Uncountable Strongly Surjective Linear Orders</title><source>Springer Nature - Complete Springer Journals</source><creator>Soukup, Dániel T.</creator><creatorcontrib>Soukup, Dániel T.</creatorcontrib><description>We call a linear order
L strongly surjective
if whenever
K
is a suborder of
L
then there is a surjective
f
:
L
→
K
so that
x
≤
y
implies
f
(
x
) ≤
f
(
y
). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo, R. Carroy and A. Marcone. In particular, ♢
+
implies the existence of a lexicographically ordered Suslin tree which is strongly surjective and minimal; every strongly surjective linear order must be an Aronszajn type under
2
ℵ
0
<
2
ℵ
1
or in the Cohen and other canonical models (where
2
ℵ
0
=
2
ℵ
1
); finally, we prove that it is consistent with CH that there are no uncountable strongly surjective linear orders at all.</description><identifier>ISSN: 0167-8094</identifier><identifier>EISSN: 1572-9273</identifier><identifier>DOI: 10.1007/s11083-018-9454-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Discrete Mathematics ; Lattices ; Mathematics ; Mathematics and Statistics ; Order ; Ordered Algebraic Structures</subject><ispartof>Order (Dordrecht), 2019-03, Vol.36 (1), p.43-64</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ddc5df422d0a4b87c221a079026a7592dd71664eb4a64f678010802dfef0fd413</citedby><cites>FETCH-LOGICAL-c316t-ddc5df422d0a4b87c221a079026a7592dd71664eb4a64f678010802dfef0fd413</cites><orcidid>0000-0001-8014-6517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11083-018-9454-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11083-018-9454-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Soukup, Dániel T.</creatorcontrib><title>Uncountable Strongly Surjective Linear Orders</title><title>Order (Dordrecht)</title><addtitle>Order</addtitle><description>We call a linear order
L strongly surjective
if whenever
K
is a suborder of
L
then there is a surjective
f
:
L
→
K
so that
x
≤
y
implies
f
(
x
) ≤
f
(
y
). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo, R. Carroy and A. Marcone. In particular, ♢
+
implies the existence of a lexicographically ordered Suslin tree which is strongly surjective and minimal; every strongly surjective linear order must be an Aronszajn type under
2
ℵ
0
<
2
ℵ
1
or in the Cohen and other canonical models (where
2
ℵ
0
=
2
ℵ
1
); finally, we prove that it is consistent with CH that there are no uncountable strongly surjective linear orders at all.</description><subject>Algebra</subject><subject>Discrete Mathematics</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0167-8094</issn><issn>1572-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAURYMoWEc_wF3BdfS9NE2apQzqCIVZjLMOaZMMLbUdk1aYv7dDBVeu3ubcex-HkHuERwSQTxERiowCFlTxnFN5QRLMJaOKyeySJIBC0gIUvyY3MbYAkKlcJITu-3qY-tFUnUt3Yxj6Q3dKd1NoXT023y4tm96ZkG6DdSHekitvuujufu-K7F9fPtYbWm7f3tfPJa0zFCO1ts6t54xZMLwqZM0YGpAKmDAyV8xaiUJwV3EjuBeygPl5YNY7D95yzFbkYek9huFrcnHU7TCFfp7UDBUXnDMlZgoXqg5DjMF5fQzNpwknjaDPVvRiRc9W9NmKlnOGLZk4s_3Bhb_m_0M_puZjaQ</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Soukup, Dániel T.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8014-6517</orcidid></search><sort><creationdate>20190315</creationdate><title>Uncountable Strongly Surjective Linear Orders</title><author>Soukup, Dániel T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ddc5df422d0a4b87c221a079026a7592dd71664eb4a64f678010802dfef0fd413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Discrete Mathematics</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soukup, Dániel T.</creatorcontrib><collection>CrossRef</collection><jtitle>Order (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soukup, Dániel T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncountable Strongly Surjective Linear Orders</atitle><jtitle>Order (Dordrecht)</jtitle><stitle>Order</stitle><date>2019-03-15</date><risdate>2019</risdate><volume>36</volume><issue>1</issue><spage>43</spage><epage>64</epage><pages>43-64</pages><issn>0167-8094</issn><eissn>1572-9273</eissn><abstract>We call a linear order
L strongly surjective
if whenever
K
is a suborder of
L
then there is a surjective
f
:
L
→
K
so that
x
≤
y
implies
f
(
x
) ≤
f
(
y
). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo, R. Carroy and A. Marcone. In particular, ♢
+
implies the existence of a lexicographically ordered Suslin tree which is strongly surjective and minimal; every strongly surjective linear order must be an Aronszajn type under
2
ℵ
0
<
2
ℵ
1
or in the Cohen and other canonical models (where
2
ℵ
0
=
2
ℵ
1
); finally, we prove that it is consistent with CH that there are no uncountable strongly surjective linear orders at all.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11083-018-9454-7</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-8014-6517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8094 |
ispartof | Order (Dordrecht), 2019-03, Vol.36 (1), p.43-64 |
issn | 0167-8094 1572-9273 |
language | eng |
recordid | cdi_proquest_journals_2194644296 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Discrete Mathematics Lattices Mathematics Mathematics and Statistics Order Ordered Algebraic Structures |
title | Uncountable Strongly Surjective Linear Orders |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncountable%20Strongly%20Surjective%20Linear%20Orders&rft.jtitle=Order%20(Dordrecht)&rft.au=Soukup,%20D%C3%A1niel%20T.&rft.date=2019-03-15&rft.volume=36&rft.issue=1&rft.spage=43&rft.epage=64&rft.pages=43-64&rft.issn=0167-8094&rft.eissn=1572-9273&rft_id=info:doi/10.1007/s11083-018-9454-7&rft_dat=%3Cproquest_cross%3E2194644296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2194644296&rft_id=info:pmid/&rfr_iscdi=true |