Uncountable Strongly Surjective Linear Orders
We call a linear order L strongly surjective if whenever K is a suborder of L then there is a surjective f : L → K so that x ≤ y implies f ( x ) ≤ f ( y ). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo,...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2019-03, Vol.36 (1), p.43-64 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We call a linear order
L strongly surjective
if whenever
K
is a suborder of
L
then there is a surjective
f
:
L
→
K
so that
x
≤
y
implies
f
(
x
) ≤
f
(
y
). We prove various results on the existence and non-existence of uncountable strongly surjective linear orders answering questions of R. Camerlo, R. Carroy and A. Marcone. In particular, ♢
+
implies the existence of a lexicographically ordered Suslin tree which is strongly surjective and minimal; every strongly surjective linear order must be an Aronszajn type under
2
ℵ
0
<
2
ℵ
1
or in the Cohen and other canonical models (where
2
ℵ
0
=
2
ℵ
1
); finally, we prove that it is consistent with CH that there are no uncountable strongly surjective linear orders at all. |
---|---|
ISSN: | 0167-8094 1572-9273 |
DOI: | 10.1007/s11083-018-9454-7 |